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Automated scene interpretation has benefited from advances in ma-
chine learning, and restricted tasks, such as face detection, have
been solved with sufficient accuracy for restricted settings. However,
the performance of machines in providing rich semantic descriptions
of natural scenes from digital images remains highly limited and
hugely inferior to that of humans. Here we quantify this “semantic
gap” in a particular setting: we compare the efficiency of human
and machine learning in assigning an image to one of two categories
determined by the spatial arrangement of constituent parts. The
images are not real, but the category-defining rules reflect the com-
positional structure of real images and the type of “reasoning” that
appears to be necessary for semantic parsing. Experiments demon-
strate that human subjects grasp the separating principles from a
handful of examples, whereas the error rates of computer programs
fluctuate wildly and remain far behind that of humans even after ex-
posure to thousands of examples. These observations lend support
to current trends in computer vision such as integrating machine
learning with parts-based modeling.
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Introduction

mage interpretation, effortless and instantaneous for peo-

ple, remains a fundamental challenge for artificial intelli-
gence. The goal is to build a “description machine” that au-
tomatically annotates a scene from image data, detecting and
describing objects, relationships and context. It is generally
acknowledged that building such a machine is not possible
with current methodology, at least when measuring success
against human performance.

Some well-circumscribed problems have been solved with
sufficient speed and accuracy for real-world applications. Al-
most every digital camera on the market today carries a face
detection algorithm that allows one to adjust the focus accord-
ing to the presence of humans in the scene; and machine vision
systems routinely recognize flaws in manufacturing, handwrit-
ten characters and other visual patterns in controlled indus-
trial settings.

However, such cases usually involve a single quasi-rigid ob-
ject or an arrangement of a few discernible parts, and thus do
not display many of the complications of full-scale “scene un-
derstanding.” Moreover, achieving high accuracy usually re-
quires intense “training” with gigantic amounts of data. Sys-
tems that attempt to deal with multiple object categories,
high intra-class variability, occlusion, context and unantici-
pated arrangements, all of which are easily handled by peo-
ple, typically perform poorly. Such visual complexity seems
to require a form of global reasoning that uncovers patterns
and generates high-level hypotheses from local measurements
and prior world knowledge.

In order to go beyond general observation and speculation,
we have designed a controlled experiment to measure the dif-
ference in performance between computer programs and hu-
man subjects. The Synthetic Visual Reasoning Test (SVRT)
is a series of twenty-three classification problems involving
images of randomly generated shapes; see Figure . Whereas
many factors affect the performance of both machines and
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people in analyzing real images, the SVRT is designed to fo-
cus on one in particular - abstract reasoning. As a result, we
have purposely removed many of the sub-tasks and compli-
cations encountered in parsing images acquired from natural
scenes: there is no need to recognize natural objects or to
account for volume, illumination, texture, shadow or noise.
Moreover, being planar and randomly generated, the shapes
are “unknown” to humans, which ameliorates our advantage
over machines due to extensive experience with everyday ob-
jects and a three-dimensional world.

For each problem there are two disjoint “categories” of
images. Figure displays one example from each category for
eight of the twenty-three problems. Classification is at the
level of relationships not individual shapes; the difference be-
tween the two categories boils down to a compositional “rule.”
For instance, in problem #4, each image depicts two outlined
shapes, one large and one small; in category one the small
shape is enclosed in the large one, whereas in category two
the two shapes are side by side. The underlying rule is “in-
side.” Similarly, in problem #10, the four shapes in category
one form a square; and in problem #21 one of the shapes
in category one can be made to coincide with the other one
by translating, scaling and rotating. For each category in
each problem we can generate as many examples of images
as desired. Formally, in fact, each category is defined by a
probability distribution over images (see Methods), and gen-
erating an image from the category means calling a computer
program to sample from the corresponding distribution.

Assessing how well machines can perform is less straight-
forward than with people. Computer vision supports a wide
variety of competing paradigms (see Discussion). One ap-
proach is supervised and unstructured machine learning: a
computer program whose input is a given set of images to-
gether with their true labels and whose output is a decision
rule for labeling a new image (see Methods). This approach
accounts for many of the success stories in computer vision,
e.g., cell phone face detectors. Other prominent strategies for
building image interpretation machines include constructing
stochastic, generative image models, likelihood-based statis-
tical inference and designing biologically-inspired hierarchical
models, as well as many hybrids of such models and machine
learning (see Discussion).

Our goal here is to see what “off-the-shelf” machine learn-
ing technology can do, namely methods that do not require
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customized tuning for the SVRT. We are interested in both
accuracy and learning efficiency, meaning the number of train-
ing examples necessary to either “grasp the rule” (for humans)
or reach a given level of accuracy (machines).

SVRT

For each of the twenty-three problems the objective is to as-
sign an observed 128 x 128 binary image I to one of two cat-
egories. From a human perspective, the SVRT is designed so
that the two categories can be perfectly separated once the
underlying rule is understood. See Methods for the techni-
cal definitions of the categories in the context of statistical
learning.

In each case, what distinguishes the two categories is
some gestalt-like property of the global spatial arrangement of
parts, which are randomly generated, highly irregular closed
contours (see Figure ). The number of possible parts is
very large and brute-force memorization of those already seen
serves no purpose. Indeed, the categories cannot be separated
based on the appearance, spatial positioning or any other geo-
metric or topological property of individual parts. Separation
must be “holistic” in the sense of discovering the principles
that determine how the parts are combined into a global pat-
tern.

The basis for the rules for differentiation fall into one
of the following overlapping groups: (1) global symmetries;
(2) shape equivalence up to translation, scale or rotation; (3)
proximity and contact; (4) relative distances; (5) meta-shapes;
(6) inclusion; (7) cluster properties; (8) ordering. A more
complete description, including illustrations and an expanded
discussion of the correspondences between problems and con-
cepts, appears in the SI Appendix.

Needless to say, these parts and arrangements represent
a gross over-simplification of the natural world. In addition
to the absence of intensity variations, pixel-level noise and
other properties of natural images, real physical components
such as limbs, leaves, handles and windows are individually
recognizable and help us to identify the categories to which
they belong. Here, by design, the individual shapes are not
meaningful. Nonetheless, parsing visual data also involves
detecting organizational principles similar to those underly-
ing the SVRT (proximity, similarity, symmetry, etc.); indeed,
the same “part” may appear in many different objects, and
parts themselves are typically composed of sub-parts which
may not be so easy to recognize except in the context of
other parts. Many would argue (see Discussion) that the
ability of humans to annotate scenes with words derives at
least partially from the ability to evaluate the plausibility of
arrangements of parts at many scales and levels of semantic
resolution[OSB06, ZM06, AT07, CJZ+10).

Hence the simplicity of the images in the SVRT, and the
fact that the parts are very weakly informative about the cate-
gory, necessitates that whatever “reasoning” is to occur must
take into account the types of rules listed above, which are
involved in most challenging computer vision problems.

Results
Human ezperiments

Each participant completed the same twenty-three prob-
lems in a random order. For each problem, they were shown
one instance at a time selected randomly with equal proba-
bility from either a set of instances that satisfied the current
rule (i.e., one category) or a set that did not satisfy the rule
(i.e., from the other category). See Fig. for examples and
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Methods for a more detailed description of the stimuli. The
participant assigned the instance to one of the two categories.
Feedback was provided after each response, and all instances
viewed so far for that problem remained on the screen, clus-
tered according to their correct categorization, so they could
be used as the problem progressed to help learn the rule (see
Figure 2 and Methods for more details).

Fig. summarizes human performance on this task. The
mean number of instances required to learn each rule (see
Methods) is plotted in Fig. a against the number of subjects
(out of 20) who failed to learn that rule; these two measures
were highly correlated (r = 0.929,p < 001). Performance on
four of the problems was categorically poorer than on the
rest; these “hard” problems correspond to the four points
clustered in the upper right of Fig. a and are identified in
the Supplementary Material. Participants viewed an average
of 6.27 4+ 0.85 instances before successfully learning each rule.
Figure b shows the frequency of number of instances viewed
before learning the rule for the 397 successfully learned rules
(23 rules x 20 subjects — 63 failures). Seventeen of the 20 par-
ticipants successfully learned 19 or more of the 23 problems.

Machine experiments

We have used two popular machine learning algorithms in
our experiments: Boosting with the standard Adaboost pro-
cedure [FS99], and a Support Vector Machine with a Gaussian
kernel [Vap95]. See Methods for the experimental settings, in-
cluding parameter choices and image pre-processing (feature
design). We observed lower error rates with Boosting, and
the results reported in this section were obtained with this
algorithm; additional results with the support vector machine
are given in the SI Appendix.

Performance varies considerably depending on the prob-
lem and the number of training examples, with prediction
rates spanning the full range from 0% to 50%, as shown in
Figure 4. However, some trends are evident. Performance
strictly increases with both the number of training samples
(Figure 4a) and the complexity of the image processing in
terms of the richness of the features extracted from the raw
binary images prior to machine learning (Figure 4b).

With only ten examples of each category for training, the
error remains virtually at 50% for every problem. Some prob-
lems could not be solved with even 10,000 training examples,
with the error rate remaining above 25% for six problems (Fig-
ure 4a). This is in sharp contrast with human performance
(see Discussion). As for the effect of the choice of features, for
multiple problems the error rate dropped from values above
30% to values below 5% when moving from the simplest image
processing scheme to the most complex one, in some cases be-
cause adding Fourier features exposed symmetries (see Figure
4b and Problems #1, #16, and #22 in the SI Appendix).

Discussion

The SVRT exhibits patterns that are easy to spot and charac-
terize for humans and extremely difficult to learn for generic
machine learning systems. Humans solved the problems after
seeing fewer than twenty examples in most cases. After see-
ing at most a few tens of examples, and usually many fewer,
fourteen of the twenty-three problems were solved by more
than 90% of the participants and another group of five prob-
lems were solved by 75%. In contrast, even with ten thousand
examples for training and complex image pre-processing, the
Boosting machine learning algorithm was only able to solve
eleven of the problems at an error rate below 10%, and an-
other five with an error rate below 25%. If the number of
training examples is of the order in human learning, the ma-
chine performance amounts to random guessing.
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Still, it has been well-known for a long time from the
theory of nonparametric inference that even naive machine
learning techniques, such as nearest-neighbor classification,
can achieve optimal performance in the large-sample limit
[DH73, Gre80]. And we do observe a marked improvement
as the number of training examples increases, albeit on a log
scale. However, the results are still far from optimal (zero
error rate) even after ten thousand examples.

People tend to characterize a category in phrases such as:
“the two shapes are in contact,” “the two halves of the picture
are symmetric,” “the shapes are aligned with the large one be-
tween two small ones.” But due to the black box nature of
the computer algorithms, which learn very high-dimensional
decision boundaries, it is difficult to measure the extent to
which the resulting classifiers “understand” the categories. In
particular, the machine learning methods we have used can-
not directly extract and process information about the overall
geometry of the scene. They must “learn” solely from elemen-
tary, statistical local measurements (see Methods). They have
direct access to information of the sort “there is an elongated
dark area”, “the black pixels are spread-out”, “there is a patch
with edges all in the same direction”. In particular, there is no
platform for learning concepts like “symmetric” or “aligned”,
i.e., no hard-wired mechanism for constructing an abstract,
category-specific model of the arrangements of shapes. In-
stead, such methods rely on observing a great many sample
configurations in each category in order to reach even modest
error rates.

There is one aspect of the machine learning that can be
deconstructed by observing the features selected by the boost-
ing algorithm: an exploitation of statistical cues which may
at first seem irrelevant to the actual structure of the problem.
Whereas we attempted to eliminate gross intensity differences
between the categories (e.g., equalizing the average number
of black pixels), many “tells” slipped through. For instance,
samples of problem #8 are composed of two closed shapes of
different size, with the small one enclosed by the large one in
the first category but not in the second category. As a re-
sult, the categories can be separated with a very crude test
on the variance of the black pixel locations, these being more
“spread-out” in category two. In fact, simply thresholding
the standard statistical measure of variance yields an error
rate of only 9%. The same “trick” applies to several other
problems, and similar tells can be used to detect symmetry
with respect to a centered axis, as the distribution of black
pixels is more dispersed horizontally and more peaked verti-
cally. In the end, a few global, exact geometrical properties
are perceived through a multitude of cues reflecting small sta-
tistical differences between the distribution of mass in the two
categories.

Finally, in computer vision there is a long history of varia-
tions on the intuitive strategy of decomposing complex entities
into their constituent parts in order to facilitate recognizing
common objects in complex natural scenes [FE73]. For in-
stance, a car is composed of wheels, doors, windows, and other
components that are individually recognizable and that come
together with a preferred geometry. Whereas there has been
considerable progress in object recognition based on explic-
itly compositional models [ZM06, OSB06, CJZ+10], as well as
some biologically inspired ones [RP99], the most popular tech-
niques until recently [RBK98, VJ04, DT05] were surprisingly
closer to pure machine learning without explicitly introduc-
ing either compositions or invariance to geometric deforma-
tions. Such methods do not accommodate variability other
than changes in illumination and local deformations. Only
multi-layer neural networks have been leveraging more com-
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plex models, which can be seen as parts and composition of
parts [LB94].

More recently, machine learning methods have evolved
progressively toward the part-based techniques, either by com-
bining simple part characterizations with absolute constraints
on their locations [GDO05], or by introducing latent variables
related to the location of parts [LFP03, AT07, HF05]. In
fact, methods currently considered state-of-the-art on canon-
ical benchmarks belong to this family, and combine discrimi-
native part detectors with simple models of arrangements of
parts [FGMRO09]. Also, training procedures for multi-layer
neural-networks have been improved to leverage large sets of
unsupervised data, which allows one to discover richer latent
structures [HOT06].

In summary, we have demonstrated the poor performance
of model-free machine learning, both in absolute terms and
relative to humans, on visual tasks designed to require ab-
stract reasoning about scene constituents. Whereas these ob-
servations lend support to current trends in computer vision
to merge tabula rasa machine learning with hierarchical im-
age models, it is still doubtful that any current method could
match human performance on the SVRT, namely near-perfect
categorization with at most tens of examples.

Methods

Human experiments

Twenty members of the Johns Hopkins University commu-
nity (14 women and 6 men, ages 18 — 21) each participated in a
one-hour session and received partial course credit. All partic-
ipants had either normal or corrected-to-normal vision. Each
participant signed an informed consent form and participated
under a protocol that was approved by the JHU Homewood
Institutional Review Board.

For each pattern classification problem, binary images
containing configurations of shapes (see Fig. for examples)
were displayed one at a time, and classified as one of two
categories. Images from category one were considered to sat-
isfy some discriminating rule. Participants had to learn the
problem-dependent classification rule by trial and error. Stim-
uli were presented and responses collected using a custom
script written with the PsychToolbox extension of MATLAB
on a PC.

For each problem, the participant first saw an instance
subtending 6.7 degrees of visual angle in the upper center of
the screen (Fig. 2); it remained on the screen until the partic-
ipant responded. The participant pressed one key to indicate
that the exemplar belonged to category one (satisfied the rule)
and another key to indicate that it did not, i.e., belonged to
category two (did not satisfy the rule). The responses were
unspeeded. Following their response, feedback text appeared
(either “Correct!” or “Incorrect”) and the current instance
then appeared (along with previous instances from that prob-
lem) within a box on the lower left of the computer screen if
it was in fact an instance that satisfied the current rule, or
lower right if not. These previously seen stimuli (subtending
3.4 degrees of visual angle) remained on the screen through-
out the rest of the current problem, so the participant could
refer to them as they worked on the current problem. The
feedback text remained on the screen for 0.9 sec before the
next instance appeared.

Participants continued classifying images until they made
seven correct responses in a row (counted as a “success”) or
until they had seen a total of 35 instances without success
(counted as a “failure”). They received feedback for the prob-
lem (“Good job!” or “Nice Try”) and were then prompted to

PNAS | Issue Date | Volume | Issue Number | 3



press the space bar on the keyboard when they were ready to
move on to the next problem.

Each participant completed the same twenty-three classi-
fication problems. Participant 1 completed the problems in
a random order, and Participant 2 completed the problems
in the reverse order; Participant 3 completed the problems in
a new random order, and Participant 4 in the reverse order;
and so forth. A large pool of instances from each category was
randomly generated for each problem using the algorithm de-
scribed in the text. Each instance was shown only once in the
entire experiment.

Machine experiments

Each problem is represented by two probability distribu-
tions P; and P, over binary images. These distributions define
the two categories: if P (I) > 0 (resp., P>(I) > 0) then image
I belongs to category one (resp., category two), and no image
satisfies both positivity conditions. In the language of statis-
tical learning, the Bayes error rate is zero. Sampling from P;
and P» is very simple, and consequently one can generate as
many independent instances as desired in order to assess the
effect of the number of training examples — previously seen
correctly labeled instances - on the ability of either a human
or machine to correctly classify a new sample.

Machine learning techniques combine two modules ad-
dressing complementary aspects of the problem. The first
module is called a feature extractor. It is hand-designed and
remains unmodified during learning. The purpose is to com-
pute numerical properties of the raw image data which may
be useful in discriminating between the two categories. A use-
ful property is then one whose typical values are appreciably
different from one sub-population of images to another in a
statistical sense.

The second module is the machine learning algorithm per
se. The input is the list of numerical values computed by the
feature extractor (the “feature vector”) and the output is the
predicted category for the feature vector. The decision rule is
characterized by a very large number of parameters (weights,
synaptic coefficients, etc.) and training consists in optimizing
these parameters so that predictions on the training data are
as consistent as possible with the known labels of the images.
As a result, the nature of decision-making is usually difficult
to describe in ordinary language (“black boxes”).

We used two standard learning methods: Boosting of
stumps and SVM with a Gaussian kernel. Each method was
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trained with three different groups of features of increasing
complexity. We did not use features that require training.
The features of group 1 compute the number of black pixels
in a rectangular subregion of the image for a large number of
such regions; those in group 2 also gather information about
the distribution of edges (sharp local transitions) in the im-
age; and those of group 3 add spectral properties of the image
(Fourier and wavelet coefficients). All of these features are
generic, and are not dedicated or tuned to the types of images
or category differences.

The Boosting method is standard Adaboost with fea-
ture sampling. During training, it iteratively selects 1000
“stumps”, each defined by a feature, a threshold, and a signed
weight. For each stump, we sample 100 features, and compute
for each the optimal threshold and weight. Since the features
are organized into families, we sample each feature by first
picking a family at random uniformly, and then a feature at
random in this family, also uniformly. This procedure ensures
a uniform sampling among families of features, despite their
strong difference of cardinality. During testing, each stump
votes for one of the two categories depending on the observed
value of feature relative to the learned threshold. Hence, for
instance, if a particular feature usually has higher values for
images in the first category, the Boosting algorithm may select
it and assign it a positive weight.

The second technique we used is a Support Vector Ma-
chine with a Gaussian kernel. It associates a weight with
each training example, and classifies a test image depending
on its similarity to the training samples and their weights.
The measure of similarity between images depends on the fea-
tures. For computational reason, we do not work with all the
features, but randomly sample 10,000 of them. In addition
to the choice of features, the SVM depends critically on two
parameters: the penalty constant C' and the variance o of
the Gaussian kernel. Both choices were optimized through
five-fold cross-validation. No pre-filtering of the features was
performed for the SVMs. This may explain in part the lim-
ited improvement in performance with more complex feature
groups when compared with Boosting.

ACKNOWLEDGMENTS. F.F. was supported by E.U. grant agreement No 247022
- MASH; C.D. by the Swiss National Science Foundation under the grant No 200021-
124822 - VELASH; S.Y. by NIH grant R01-DA013165; and D.G. by ONR contract
N00014-07-1-1002 and NSF grant 0427223.

LB94. Y. LeCun and Y. Bengio. Word-level training of a handwritten word recognizer
based on convolutional neural networks. In IAPR, editor, Proceedings of the In-
ternational Conference on Pattern Recognition, volume Il, pages 88-92. IEEE,
1994.

F. Li, R. Fergus, and P. Perona. A Bayesian approach to unsupervised one-shot
learning of object categories. In International Conference on Computer Vision,
volume 2, page 1134, 2003.

B. Ommer, M. Sauter, and J. M. Buhmann. Learning top-down grouping of
compositional hierarchies for recognition. In Proceedings of the 2006 Confer-
ence on Computer Vision and Pattern Recognition Workshop, page 194, 2006.

LFPO03.

0SBO06.

RBK98. H. A. Rowley, S. Baluja, and T. Kanade. Neural network-based face detection.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(1):23-28,

1998.

M. Riesenhuber and T. Poggio. Hierarchical models of object recognition in
cortex. Nature Neuroscience, 2(11):1019-1025, 1999.

V. N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag,
1995.

VJo4. P. Viola and M. J. Jones. Robust real-time face detection. International Journal
of Computer Vision, 57(2):137-154, 2004.

S.C. Zhu and D. Mumford. A stochastic grammar of images, volume 2 of Foun-

dations and Trends in Computer Graphics and Vision, pages 259-362. Now
Publishers, 2006.

RP99.

Vap95.

ZM06.

Footline Author



RN o n 2@ 4 4
& o 9 . |

8 o . 9 ?a 1O
a4 a4

< 7 <

a : oi I |

#1 #4 #9 #10 #11 #12 #18 #21

Fig. 1. A selection of visual categorization problems. One instance from Category 1 (top) and one instance from Category 2 (bottom) is shown for each of eight different
problems. Each instance is a binary image of resolution 128 X 128 pixels. In Problem #1 both categories are represented by two randomly generated and randomly positioned
shapes; the difference is that the two shapes are identical in Category 1. The underlying differentiating "rule” in Problem #4 is "outside vs inside”, whereas in Problem #9
the largest of the three shapes is "in between” the two smaller ones in Category 1 but not in Category 2. The difference between the two categories in each of the other five
problems can also be "explained” in terms of concepts such as distance, symmetry, reflection, composite shape and shape equivalence up to scale, orientation or translation.
Multiple instances of each of the 23 problems can be found in the SI Appendix.
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Fig. 2. Example screen shot of the interface for the human experiments. This participant is working on problem #13, has already classified six training instances (whether
right or wrong) and is considering the seventh one, displayed at the top center. The previous instances are shown correctly classified on the left (Category 1) and right (Category
2). Responses were unspeeded. A session for a given problem and individual terminates following either a success (7 correct responses in a row) or failure (35 instances
categorized without success).
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Fig. 3. Summary of human performance. There were 20 participants and 23 problems for a total of 460 attempts. Of these, 63 were not successful. (a) Given successful
learning, the mean number of trials required to learn the rule plotted against the number of participants who failed to learn the rule. Each point is a problem. (b) Distribution
of the number of instances required for participants to successfully learn the rule (i.e., correctly categorize seven subsequent instances without error) over the 397 successful
attempts.

Footline Author PNAS | Issue Date | Volume | Issue Number | 5



0.5 0.5

o o
© ©
© ©
g — g
[0 [0
% 025 N % 025 e
o o
o o
M \ o

0 — 0 ,&

10 100 1000 10000 1 2 3
Number of samples Feature groups

(a) (b)

Fig. 4. Summary of machine performance. Both graphs show error rates on the 23 problems, organized in three arbitrary sub-groups ranked by difficulty. The blue group
contains all the problems for which the machine learning reached a final error rate greater than 25%, the red group contains the problems for which the best error rate was
lower than 6%. The graph (a) shows the error rate as a function of the number of examples available for training, using all the image features. The error rate fluctuates
around 50% when only 10 examples are used, and for almost all problems, the error rate decreases sharply when the number of samples increases. Graph (b) shows the error
rates with 10, 000 training examples as a function of the complexity of the image features used. The features in group 1 compute the number of black pixels over rectangular
areas of varying sizes, those in group 2 are based on edge statistics, and those of group 3 are related to the spectral properties of the image (Fourier and wavelet coefficients).
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Fig. 5. Comparison of human and machine performance in terms of learning efficiency and error rate. In both plots, the horizontal axis is the error rate of the predictor
trained with Boosting and 10,000 instances per problem and the most complete feature set. The vertical axis in (a) is the average number of samples necessary for human
participants to learn the rule, and the vertical axis in (b) is number of participants (out of 20) failing to learn the concept after 35 examples.
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