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The enormous amount of biomolecule measurement data generated from high-throughput 
technologies has brought an increased need for computational tools in biological analyses. 
Such tools can enhance our understanding of human health and genetic diseases, such as 
cancer, by accurately classifying phenotypes, detecting the presence of disease, discrimi-
nating among cancer sub-types, predicting clinical outcomes, and characterizing disease 
progression. In the case of gene expression microarray data, standard statistical learning 
methods have been used to identify classifiers that can accurately distinguish disease phe-
notypes. However, these mathematical prediction rules are often highly complex, and they 
lack the convenience and simplicity desired for extracting underlying biological meaning or 
transitioning into the clinic. In this review, we survey a powerful collection of computational 
methods for analyzing transcriptomic microarray data that address these limitations. Rela-
tive Expression Analysis (RXA) is based only on the relative orderings among the expres-
sions of a small number of genes. Specifically, we provide a description of the first and 
simplest example of RXA, the k-TSP classifier, which is based on k pairs of genes; the case 
k = 1 is the TSP classifier. Given their simplicity and ease of biological interpretation, as 
well as their invariance to data normalization and parameter-fitting, these classifiers have 
been widely applied in aiding molecular diagnostics in a broad range of human cancers. 
We review several studies which demonstrate accurate classification of disease phenotypes 
(e.g., cancer vs. normal), cancer subclasses (e.g., AML vs. ALL, GIST vs. LMS), disease 
outcomes (e.g., metastasis, survival), and diverse human pathologies assayed through 
blood-borne leukocytes. The studies presented demonstrate that RXA—specifically the TSP 
and k-TSP classifiers—is a promising new class of computational methods for analyzing 
high-throughput data, and has the potential to significantly contribute to molecular cancer 
diagnosis and prognosis.
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Introduction

High-throughput measurements in biology (e.g., transcriptomics, proteomics, 
metabolomics) provide an enormous amount of information, but only implicitly, 
in the form of raw expression values. Harnessing this information means con-
verting it to knowledge and, for the purposes of classification, useful decision 
rules; this conversion can enable a greater understanding of cancer and drive 
advances in personalized medicine. A systems-level approach, which employs 
computational and statistical tools to reveal and evaluate patterns with diagnostic 
or prognostic value, is critical to fully exploiting these new technologies. In par-
ticular, molecular signatures derived from patterns in gene expression microarray 
experiments have great potential to detect the presence of disease, to discriminate 
among cancer sub-types, to predict clinical outcomes, and to provide insight into 
specific changes that occur during disease progression. 
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Perhaps the most evident challenge for developing useful 
molecular signatures is to identify classifiers that are accu-
rate for a specific study or platform, and that are also robust 
across a wide range of settings. Previous studies have aimed 
to identify sets of individual genes (“signatures”) whose 
differential expression is highly correlated with phenotypic 
changes (e.g., genes that may be over- or under-expressed 
in cancer relative to normal). In these cases, increased or 
decreased absolute mRNA concentration levels above some 
threshold (i.e., more than would be statistically expected by 
chance for a gene on the microarray) are put forth as candi-
dates for disease-induced (or causing) perturbations. Unfor-
tunately, the statistically significant genetic changes often 
depend largely on the context of the microarray experiment. 
Even when thresholds are tuned to produce statistically sig-
nificant results, findings can depend heavily on a number of 
factors, such as the experimental design and the type of data 
normalization. Consequently, there may be little to no overlap 
in the molecular signatures identified from one platform to 
another, or by extension, from one clinical setting to another. 

A less evident, but equally important, challenge for pheno-
type classification using gene expression data is to develop 
techniques that not only yield accurate and robust decision 
rules, but also provide rules that are easy to interpret and 
might contribute to biological understanding. Advanced 
statistical learning and pattern recognition methods are rou-
tinely applied to transcriptomics and other high-throughput 
data types. These include neural networks (1-3), decision 
trees (4-6), boosting (5, 7) and support vector machines  
(8, 9). In many cases, these methods achieve good classifica-
tion performance, with sensitivities and specificities above 
ninety percent. However, they generally result in extremely 
complex decision rules based on nonlinear functions of 
many gene expression values. Therefore, whereas advanced 
methods may be more accurate than those based on the pat-
terns of individual genes, they usually produce decision rules 
which are virtually impossible to interpret. Furthermore, as 
the number of variables (transcripts) far exceeds the number 
of observations in most microarray studies, building more 
complex classifiers entails a greater risk of over-fitting the 
training data and poor generalization.

An important potential benefit of simple and interpreta-
ble decision rules is to provide insight into the underly-
ing biological differences between phenotypes. Notably, 
malignant phenotypes in cancer arise from the net effect 
of interactions among multiple genes and other molecu-
lar agents within biological networks. Genes in networks 
operate in a combinatorial manner—the actions of one gene 
greatly influence the actions of other genes. This often lim-
its the information that can be gleaned from the expression  
patterns of individual genes. As an alternative approach, 
studying gene expression in the context of networks may 
yield greater insight into mechanisms and functional 

changes associated with disease. Recently, methods for 
analyzing microarray data have focused not on individual 
genes, but instead on biologically meaningful pathways or 
networks (10-13). These frameworks have been applied to 
diverse cancer systems and serve as a robust source of bio-
logical discovery (12, 14).

At scales smaller than biological networks or even pathways, 
assessing the relationships among a small number of genes—
for example, the patterns of interactions among just two or 
three genes—can provide useful information about biomo-
lecular processes. One way to probe the interactions among 
several genes is to study their relative expression, i.e., the 
ordering among the expression values, rather than their abso-
lute expression values. One then searches for characteristic 
perturbations in this ordering from one phenotype to another. 
The simplest form of such an interaction is the ordering of 
expression among two genes, in which case one seeks to 
identify typical “reversals”—pairs of genes for which one of 
the two possible orderings is usually present in one pheno-
type and rarely present in the other. We refer to the family 
of such rank-based methods as Relative Expression Analysis 
(RXA). This methodology is characterized by replacing each 
expression level across all genes by its corresponding rank 
within a single microarray profile. 

Here we focus on RXA methods which involve a small num-
ber of gene pairs, each exhibiting a characteristic “relative 
expression reversal” between the phenotypes or classes of 
interest. Aggregating the decisions from a few such pairs, 
even just one, is surprisingly powerful. Basing decisions on 
one pair is called the top-scoring pair (TSP) classifier (15) and 
on k pairs is called the k-TSP classifier (16). Thus, in TSP, 
a sample is classified based on a decision rule which only 
involves comparing the ranks, hence the relative expression 
levels, of two genes within a profile. For the k-TSP classifier, 
the decision rule combines a disjoint set of TSPs by simple 
majority voting. Other RXA methods include those based on 
the six possible orderings among three genes (the top-scoring 
triplet classifier (17)) and comparing the average ranks in two 
groups of genes (18). Herein we review the TSP and k-TSP 
computational methods, focusing on their utility for aiding 
molecular diagnostics in a broad range of human cancers. 
Our review is largely restricted to applications with transcrip-
tomic data, since this is the most plentiful and has been the 
most used to date. However, RXA is generally applicable to 
any ordinal data type, such as protein expression, DNA copy 
number, chromosomal position, and so forth.

Relative Expression Analysis

Microarray Data and Analysis

For those readers less familiar with computational approaches 
to microarray analysis, we first describe the typical features  
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the notation, representation of the data, and basic steps are the 
same for other approaches. Computational analysis of microar-
ray data typically involves two steps. First, a classifier is  

of microarray data and common procedures relevant to the 
results presented here. Whereas we discuss computational 
analysis of microarray data in the context of RXA (Figure 1),  

Figure 1:  Schematic overview of phenotype classification with the top-scoring pair (TSP) algorithm in cross validation. 
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classifiers are “invariant” to normalization. Moreover, the 
TSP and k-TSP classifiers are especially favorable in terms 
of the simplicity of the decision rule and the small number 
of genes involved in classification. They are easy to imple-
ment in practice since the classifier only requires measure-
ment of the expression of small number (at most 2k) of genes 
using techniques such as RT-PCR. They also remain context-
independent by not requiring any parameter-tuning or  data 
pre-processing based on genes outside of the pairs involved. 
Furthermore, since data normalization is not required, RXA 
classifiers have been shown to be useful in the integration of 
data across different studies and platforms for the purpose 
of increasing sample size and facilitating meta-analysis of 
microarray data (20). 

Training RXA Classifiers

In relative expression approaches, the features selected are 
pairs of genes. Consider first TSP. Because only gene pairs 
are considered, it is possible to completely enumerate all 
possible pairs and select the “best” ones using the training 
data. The natural criterion is performance, which anticipates 
how the pair of genes will be used for classification. As a 
result, one then selects the pair of genes gi and gj for which 
the difference |Prob(Xi  Xj | Y = A) – Prob(Xi  Xj | Y = B)| 
is maximized. This can be shown to be equivalent to maxi-
mizing the sum of sensitivity and specificity on the training 
set, which assumes an equal weight on the two classes. In 
many cases, there is a single pair of genes achieving the top 
score. Otherwise, in order to select a unique pair of genes, 
a secondary score is applied which is based on the aver-
age difference in expression values over all samples. An 
important feature of the top-scoring pair of genes is that it 
may not be the case that both genes are highly differentially 
expressed on the basis of their individual t-statistics; in fact, 
one gene may serve as a “pivot” for the other. 

Depending on which of the two probabilities Prob(Xi < Xj  
Y = A) or Prob(Xi < Xj | Y = B) is larger, the decision rule is 
either:

Rule 1: �If expression gene i < expression gene j, THEN 
class A, ELSE class B.

Rule 2: �If expression gene j < expression gene i, THEN 
class A, ELSE class B.

In the case of k-TSP, the classifier is constructed from the k 
top-scoring pairs of genes. Each pair votes for class A or class 
B the same way as in TSP and the class with the majority vote 
is chosen. Effectively, this is the maximum likelihood rule: 
choose the class for which the k observed orderings are the 
most likely. Usually, the pairs are constrained to be “disjoint,” 
meaning that a gene cannot appear in more than one pair, and 
the number of pairs (k) is determined by cross-validation up 

trained on a collection of microarray profiles (samples) 
referred to as the training set. This involves selecting a sub-
set of genes and choosing a mathematical algorithm (deci-
sion rule) to apply to the selected genes in order to determine 
the phenotype of a new sample. Of course the goal is to 
identify an algorithm that works well on a new data set, and 
the second step is then to evaluate the performance of the 
classifier on held-out data. Usually, the algorithm works 
quite well on the training data and hence validation is  
essential. 

Microarray data are typically represented as a matrix of G 
rows of genes and N columns of samples (e.g., different 
tumors, tissues, patients, time points). The nth column of this 
matrix is therefore a G x 1 vector representing the expression 
profile xn of the nth sample. Each profile contains expression 
values for gene one (g1) through gene G (gG). The expression 
level of gene gi is denoted by Xi. In addition, each sample is 
labeled by a phenotype Y ∈ {A, B, …}. For example, yn = 
A indicates that the nth sample belongs to phenotype A. The 
labeled data set to be used for classifier training is F = {(x1, 
y1), …, (xN, yN)}.

As mentioned above, the simplest method for classifying 
expression profiles based on the relative ordering of expres-
sion values is the top-scoring pair (TSP) algorithm for dis-
tinguishing between two phenotypes A and B. In TSP, a 
particular pair of genes i and j is selected during training 
and the decision rule is simple maximum likelihood: for the 
sample to be classified, choose the class, A or B, for which 
the observed ordering between the expression values of gi 
and gj is the most likely. Notice that the observed ordering is 
either Xi < Xj or Xi > Xj (we can assume at this point that ties 
are broken at random). The pair which is chosen is the one 
that achieves the highest “score” among all pairs of genes. 
This score is a quantitative measure of the degree of relative 
expression reversal estimated from the data and used for clas-
sifier training, as explained in the following section. For the 
k-TSP classifier, the decision rules are conceived in the same 
manner as in the TSP classifier, but use a combination of 
gene-pair markers to obtain potentially better classification 
accuracy. There are currently two software implementations 
available for researchers who wish to apply these methods: 
one in Perl (16) and one in R (19). 

The TSP and k-TSP classifiers are parameter-free meth-
ods that are invariant to all normalization techniques that  
are monotonic transformations of the original expression 
values within each chip or microarray. That is, if the data 
are processed in such a way that if gene gi is expressed more 
than gene gj before normalization (original data) and it is 
still expressed more after normalization (processed data), 
then the TSP and k-TSP classifiers derived from the original 
and processed data are the same. It is in this sense that these 
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RXA in the Study of Cancer 

Cancer Studies Using Relative Expression Values Before 
TSP and k-TSP

Gene-pair relative expression markers, specifically in the 
form of a two-gene expression-level ratio, have been previ-
ously used for disease classification and prognosis. Gordon  
et al., (22) successfully distinguished between malignant 
pleural mesothelioma (MPM) and adenocarcinoma (ADCA) 
of the lung based on ratios of expression. Although geneti-
cally disparate, the tissues of MPM and ADCA can be dif-
ficult to distinguish based on established histopathological 
methods. Gorden et al., (22) tested the fidelity of ratio-based 
diagnosis in differentiating between the two tissue types in 
181 samples (31 MPM and 150 ADCA). First, the investi-
gators used a training set of 32 samples (16 MPM and 16 
ADCA) to identify “differentially expressed genes based on 
various methods (fold changes, standard t-tests, expression 
cutoffs, etc.). They then formed 15 ratios using individual or 
combinations of those genes that showed the highest signifi-
cance in inversely correlated expression levels. Any single 
ratio of the 15 examined was at least 90% accurate in predict-
ing diagnosis for the remaining 149 samples (e.g., test set). 
They then examined (in the test set) the accuracy of multiple 
ratios combined to form a simple diagnostic tool. Using two 
and three expression ratios, the investigators found that the 
differential diagnoses of MPM and lung ADCA were 95% 
and 99% accurate, respectively. In this study gene pairs are 
not combined in the same way as TSP and are somewhat 
sensitive to normalization and parameter choices. Still, their 
work illustrates the utility and discriminatory power of gene 
pairs in important clinical diagnoses.

Ma et al., (23) found that a two-gene expression ratio derived 
from a genome-wide, oligonucleotide microarray analysis 
of estrogen receptor (ER)-positive, invasive breast cancers 
predicts tumor relapse and survival in patients treated with 
tamoxifen. Tamoxifen is one of the most commonly used 
medications in the treatment of early-stage and metastatic 
ER-positive breast cancer (24, 25). When administered to 
women with surgically treated ER-positive breast cancer, 
tamoxifen therapy reduces the annual risk of recurrence by 
40-50%, leading to a 5.6-10.9% improvement in 10-year 
survival (26). However, 25-66% of women diagnosed with 
ER-positive breast tumors fail to show a prolonged response 
or develop early resistance to adjuvant therapy (24, 27). Cur-
rently, there are no markers that reliably predict clinical out-
come of cancer patients treated with tamoxifen. Therefore, a 
reliable means to accurately predict tamoxifen treatment out-
come is crucial for early-stage breast cancer management.

In the tamoxifen study conducted by Ma et al., (23), a set of  
60 patients with receptor-positive primary breast cancers  

to some limit (e.g., kmax = 10) in order to keep the total num-
ber of genes manageable. Consequently, the size of the gene 
“signature” is two for TSP and 2k for k-TSP. Unlike other 
methods, once the signature is determined so is the classifier. 
That is, there are no parameters to tune, which reduces over-
fitting the training data. 

Testing RXA Classifiers

Classifier training is followed by performance evaluation 
on a test dataset. The gold standard for testing any predic-
tive method is to use an independent dataset collected solely 
for testing. However, due to the scarcity of data, the test 
set usually consists of samples collected from the original 
training dataset and set aside. Even in this case, repeated 
training and testing, known as cross-validation, is preferred 
due to small sample sizes. Such procedures involve splitting 
the original training dataset F into two smaller sets: the set 
of samples on which the classifier is trained, Ftrain; and the 
set of samples on which the classifier is tested, Ftest. Impor-
tantly, no information from Ftest can be utilized when learn-
ing the classifier on Ftrain. The data is repeatedly split into 
training and test groups, and the cross-validated accuracy 
is the average classifier performance across all test groups. 
Leave-one-out cross-validation (LOOCV) is commonly 
used, in which the total of N samples is divided into a train-
ing set of size N – 1 with the test set consisting of the single 
remaining sample. While error estimation with LOOCV is 
known to have high variance relative to the true error (21), 
it is particularly useful for TSP and k-TSP because there is 
a technique (16) which yields a very significant reduction in 
the computation involved in looping over all pairs of genes in 
each loop of cross-validation.

A number of different metrics can be used to measure the 
performance of classifiers. Particularly common measures 
include sensitivity, specificity, and overall accuracy. These 
metrics are most easily understood for experiments with a 
case (e.g., cancer) and a control (e.g., normal), but can be 
extended to any binary phenotype comparison as well as 
to multiclass problems by decomposing them into sets of 
binary comparisons. If a classifier correctly predicts that a 
cancer profile belongs to the cancer class this is known as 
a true positive (TP), and the probability of correctly label-
ing future cancer samples is the sensitivity of the classifier 
(also known as the true positive fraction). Similarly, a true 
negative (TN) is when a classifier correctly labels a normal 
sample and the probability of doing this on new samples is 
the specificity of the classifier. Importantly, the sensitivity 
and specificity computed on the samples used for training 
are upwardly biased and not predictive of cross-validated 
rates. Finally, overall accuracy can be defined in several 
ways; perhaps the simplest is the average of sensitivity and 
specificity. 



154	 Eddy et al.

Technology in Cancer Research & Treatment, Volume 9, Number 2, April 2010

not result in better classification rates, and the low accuracy 
observed in all methods applied to date is probably a func-
tion of the complexity and similarity of the phenotypes being 
separated. In the case of separating AML from ALL, the TSP 
classifier correctly classified 68 samples out of 72 samples 
in cross-validation. In comparison, the study in Golub et al., 
(29) used a fifty-gene classifier to predict 65 samples cor-
rectly out of 72.

In addition to demonstrating improved performance in classi-
fying breast cancer and leukemia samples, Geman et al., (15) 
also investigated the ability of TSP to detect the presence of 
prostate cancer. In a previous study, Singh et al., (30) found 
a strong correlation between patterns of gene expression of 
prostate cancer and various clinical and pathological aspects 
of the disease. The top-scoring gene pair using the TSP algo-
rithm on their data could discriminate non-tumor versus  
prostate tumor samples at a prediction rate of 95%. Hence, 
the classification rates using TSP were comparable to the best 
results reported previously in the literature, often incorporat-
ing hundreds of genes or more in complex decision rules. 

The performance of TSP and  k-TSP classifiers were com-
pared with those of other machine learning methods on 19 
gene expression datasets involving human cancers in a study 
by Tan et al., (16). The study investigated a number of pub-
licly available datasets, with sample sizes ranging from 33 
to 327 for each disease phenotype within a particular data-
set. The collection of datasets comprised various studies of 
human cancer, including colorectal, leukemia, lung, prostate, 
breast, central nervous system, lymphoma, bladder, mela-
noma, renal, uterus, pancreas, ovary, and mesothelioma. The 
classification performance of TSP and k-TSP was compared 
to that of decision trees (DT), Naïve Bayes (NB), k-nearest 
neighbor (k-NN), support vector machines (SVM), and pre-
diction analysis of microarrays (PAM), which is essentially 
linear discriminant analysis. The TSP and k-TSP techniques 
were also extended beyond binary classification to the multi-
class setting, where several well-known aggregation strate-
gies, such as “one-vs-all” and “one-vs-other,” were applied 
to combine the results of binary sub-problems into one final 
decision rule. 

In this study, LOOCV was used in order to estimate the 
classification rate. The best classifier based on the average 
accuracy for the binary classification problems used in this 
study was  k-TSP (92.01%), followed by SVM (91.18%), 
PAM (88.91%) and TSP (88.26%).  The differences in accu-
racies were small, so it was concluded that all four methods  
perform classification similarly. The authors also elucidate 
the biological meaning of the classifiers by showing the  
connections between the genes in the markers and their  
corresponding cancer types. For the multi-class prob-
lems, TSP achieved an average accuracy of 85.12% over  

were treated with tamoxifen alone. The results from gene 
expression profiling of the extracted tumor tissues before 
therapy indicated that the homeobox gene (HOXB13) was 
over-expressed in patients who experienced disease recur-
rence, whereas the interleukin-17B receptor gene (IL-17BR) 
and EST gene were over-expressed in those with no evi-
dence of recurrence after a 5-year treatment period. The 
investigators evaluated the prognostic utility of each of these 
three genes by itself and in combination with genes that have 
opposing patterns of expression between the two classes. 
Results from t-test and ROC analyses revealed that a two-
gene ratio of HOXB13 over IL-17BR had a stronger correla-
tion with treatment outcome than any of the genes alone with 
AUC values reaching 0.84, and was able to accurately predict 
tumor recurrence in adjuvant tamoxifen-treated patients. 

This observation was also confirmed in real-time quantita-
tive PCR analysis, where the predictive accuracy of the two-
gene ratio was 81%. Furthermore, the expression ratio of 
HOXB13 over IL-17BR outperformed existing biomarkers 
for prognosis of breast cancer, such as patient age, tumor 
size, grade, and lymph node status. In this study pre-dating 
any formal RXA classification approaches, Ma et al., (23) 
demonstrated the utility of a two-gene expression biomarker 
in identifying a subset of patients with early-stage ER- 
positive breast cancer who are at a risk for tumor recurrence 
even with tamoxifen therapy. Such a biomarker provides a 
potential means to identify patients appropriate for alterna-
tive therapeutic regimens in early-stage breast cancer.

Comparative Analysis of TSP and k-TSP Performance in 
Cancer Classification

Geman et al., (15) introduced the TSP method and dem-
onstrated its efficacy on several gene expression data sets 
involving breast, prostate and leukemia cancers. The phe-
notype classification problems considered were: (i) predict-
ing the status of lymph nodes (affected vs. non-affected) in 
patients with breast tumors using data from (28); (ii) clas-
sifying the sub-types of leukemia (AML vs. ALL) using data 
from (29); and (iii) distinguishing prostate tumors from nor-
mal profiles using data from (30). The reported accuracies 
for TSP results were based on LOOCV, and comparison to 
randomly permuted data was made to estimate the statistical 
significance for each classifier.

In predicting the status of lymph nodes in the breast cancer 
data set, a cross-validation classification rate of 79% was 
achieved from 49 patient samples. The authors also men-
tion a separate study where estimated error rates for these 
data—based on LOOCV and using a wide variety of com-
mon machine learning techniques—are summarized for 
varying numbers of pre-filtered genes (28). Other methods, 
more complex than TSP and using many more genes, did 
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10 problems, somewhat less than PAM (88.50%) and 
SVM (88.10%), which performed the best overall but used  
hundreds or thousands of genes.

In the initial variant of RXA, Geman et al., (15) showed  
that the TSP classifier provides decision rules that are highly 
accurate in binary classification problems and involve very 
few genes. Tan et al., (16) compared the TSP and  k-TSP 
approach to other machine learning techniques on a broad 
source of human cancer gene expression data. The perfor-
mance of TSP and  k-TSP on both binary and multi-class 
problems were comparable to those of the other techniques, 
while no single method was found to have the best perfor-
mance across all datasets. TSP and k-TSP were thus shown 
to have comparable accuracy to state-of-the-art methods, 
involve fewer genes and yield transparent, context-indepen-
dent classifiers which are invariant to most forms of data nor-
malization.

Specific Cancer Studies Using TSP or k-TSP

TSP-based classification methods have been applied to 
a number of specific cases of predictive studies in cancer. 
These studies can be broadly divided into those that iden-
tify classifiers for disease diagnosis and studies that develop 
relative expression classifiers for disease prognosis. Specifi-
cally, diagnosis can refer to determination of the presence or 
absence of disease, the particular sub-type of a disease, or in 
some cases the stage of disease. In contrast, prognosis aims 
to predict the outcome of patients with the disease. Examples 
of disease prognosis include response to treatment, survival 
time, and tumor metastasis. Importantly, a number of the 
studies presented here demonstrate not only the power of 
TSP methods to accurately classify microarray profiles, but 
also their utility for integrating microarray datasets from dif-
ferent sources and even across different measurement tech-
nology platforms.

Gene-pair Classifiers for Diagnosis:  Gastrointestinal 
stromal tumor (GIST) and leiomyosarcoma (LMS) are com-
mon mesenchymal tumors with similar phenotypic features. 
A whole-genome gene expression study of 68 well-charac-
terized tumor samples identified a two-gene relative expres-
sion classifier using TSP that distinguished GIST and LMS 
with 99.3% accuracy on microarray samples and 97.8% 
accuracy in cross validation (31). The classifier, which 
predicts GIST when OBSCN > C9orf65 and LMS other-
wise, was validated using RT-PCR on 20 samples from the 
original dataset and on 19 independent samples, achieving 
100% accuracy. Immunostaining for the Kit protein marker 
is currently the best test to differentiate GIST and LMS. 
Using expression of c-Kit to classify samples (with a cutoff 
determined by 1D linear discriminant analysis) achieved 
only 87.3% accuracy. That is, as some GIST samples have 

low Kit expression and some LMS samples have high Kit 
expression, testing for levels of the protein marker was 
more prone to error than predictions based on the OBSCN/
C9orf65 expression ratio.

The TSP classification method is invariant to standard pro-
cedures for monotonic data normalization, as it relies only 
on the ranks of gene expression values within the microar-
ray. As such, using TSP for classification enables the 
integration of microarray profiles from multiple datasets, 
thereby increasing the sample size of the training data and 
the predictive potential of the classifiers. Xu et al., (20) 
identified a TSP marker for prostate cancer (HPN > STAT6) 
that achieves high accuracy, sensitivity, and specificity on 
two datasets from different platforms. Performance of the 
HPN/STAT6 TSP marker—trained on integrated microar-
ray data—was better than other TSP classifiers trained on 
individual datasets. In training the classifier, three microar-
ray datasets from different prostate cancer studies were 
integrated and TSP was applied to analyze both individual 
and integrated datasets. It was found that TSP markers vary 
between individual datasets, but as more samples are added 
to the integrated training dataset, TSP selection becomes 
consistent. Stability analysis was also performed to calcu-
late the appearance frequency of markers (i.e., how often 
the same TSP markers were selected) when samples were 
randomly removed from the dataset. The TSP marker was 
tested on an independent cross-platform dataset, comprising 
prostate tumor expression values from both Affymetrix and 
spotted cDNA platforms. Samples in the independent test set 
were classified with 93.8% accuracy, 91.7% sensitivity, and 
97.7% specificity.

Gene-pair Classifiers for Cancer Prognosis:  Xu et al., 
(32) integrated three independent microarray datasets con-
taining 358 total samples for prediction of distant metastases 
in breast cancer. All samples in the integrated dataset were 
obtained from lymph-node-negative patients who had not 
received adjuvant systemic treatment. Gene expression data 
was directly merged using 22,283 probe sets on the Affyme-
trix HG-U133A microarray, and the top 200 “features” were 
selected as gene pairs with the highest TSP scores. In accor-
dance with clinical treatment guidelines defined by the St. 
Gallen (Switzerland) expert consensus and the NIH, the goal 
of the authors was to achieve the highest possible specific-
ity while maintaining high sensitivity (~90%). The optimal 
signature size (80 pairs, 112 distinct genes) was determined 
in k-fold cross-validation, and a likelihood ratio test (LRT) 
for classification based on this signature achieved 88.6% sen-
sitivity and 54.6% specificity in an independent external test 
set of 154 samples. Since the LRT assumes statistically inde-
pendent gene pairs, the decision rule amounts to weighted 
voting among the gene pair classifiers and hence is very  
similar to k-TSP.
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two IRDS status groups (IRDS(+) and IRDS(–)) using hierar-
chical clustering of microarray data. The k-TSP classifier was 
trained using 49 genes in the IRDS along with 534 previously-
defined intrinsic breast cancer genes, with the optimal num-
ber of gene pairs determined using 10-fold cross validation. 
Each of the seven selected gene pairs in the k-TSP classifier 
contained one IRDS gene and a second gene for comparison. 
Classification was based on a majority vote, where samples 
were classified as IRDS(+) if expression of the IRDS gene was 
higher than the other gene in at least four of the seven pairs. 

For the purpose of employing a non-binary measure for sur-
vival analysis, the number of positive-scoring gene pairs was 
used to define a TSP IRDS score. Specifically, the sum of 
pair-wise comparisons in which the IRDS gene was more 
highly expressed defined an ordinal scale from zero to seven, 
with seven representing the most IRDS(+)-like pattern. To 
examine the IRDS as a predictive marker for therapy out-
come, a data set of 295 patients with early stage breast cancer 
was analyzed based on the TSP IRDS score. A multivariate 
Cox proportional-hazards model for metastatic risk when 
an interaction with chemotherapy is considered revealed a 
hazard ratio of 1.2—signifying a 1.2-fold increased risk of 
metastasis for each incremental increase in the TSP IRDS 
score from 0 to 7. These statistically significant results sug-
gested that an association of the IRDS with clinical outcome 
depends on the use of adjuvant chemotherapy.

Broad Application of TSP in Disease Diagnosis and 
Prognosis

A more recent study has shown that two-transcript classifi-
ers have the potential to reliably classify diverse human dis-
eases (36). In this study, the investigators sought to assess 
the effectiveness of the TSP approach in the identification of 
diagnostic classifiers in a number of human diseases includ-
ing bacterial and viral infection, cardiomyopathy, diabetes, 
Crohn’s disease, and transformed ulcerative colitis through 
analysis of both local diseased tissue and the immunologi-
cal response assayed through blood-borne leukocytes. The 
results of this study showed that several diseases of solid 
tissues could be reliably diagnosed through TSP classifiers 
based on the blood-borne leukocyte transcriptome. The TSP 
method identified multiple predictive gene pairs for each 
phenotype, with LOOCV accuracy ranging from 70 to nearly 
100 percent. Performance compared favorably with that of 
pre-existing transcription-based classifiers, and in some cases 
approached the accuracy of current clinical diagnostic pro-
cedures. Thus, this study provided further evidence that the 
TSP classifier represents a simple yet robust method to dif-
ferentiate between phenotypic states based on gene expres-
sion profiles of diverse human pathologies. The experimental 
simplicity of this method results in measurements that can be 
easily translated to clinical practice.

Over-expression of the Src tyrosine kinase in pancreatic can-
cer is thought to play a significant role in tumor develop-
ment and progression. The in vivo efficacy of an orally active 
small molecule Src inhibitor AZD0530 was investigated in 
a collection of pancreatic tumor xenografts (33). The k-TSP 
algorithm was applied to gene expression profiles from the 
tumors in order to identify predictive biomarkers of response 
to AZD0530. Tumor growth index (TGI) was used to mor-
phologically classify xenografts as sensitive (TGI < 50%) or 
resistant (TGI > 50%) to AZD0530 treatment. In the training 
set of 16 xenografts (3 sensitive, 13 resistant), the expression 
ratio LRRC19 > IGFBP2 was identified as the most accurate 
classifier for treatment-sensitive cases (and correspondingly 
predicted cases as resistant when LRRC19  IGFBP2). 

In the same study, the k-TSP classifier achieved an estimated 
LOOCV accuracy of 97.8% on the microarray data set. The 
two-gene predictor was tested and validated on eight inde-
pendent xenografts not included in the original training set 
and achieved an overall accuracy of 87.5%, specificity of 
83.3%, and sensitivity of 100%. RT-PCR was performed 
on the two genes in the eight independent xenografts, show-
ing the relative expression of LRCC19 and IGFBP2 was the 
same as measured by microarray gene expression in all cases. 
This stability across different measurement platforms is criti-
cal for application in the clinic, and represents an advantage 
of methods based on RXA.

A two-gene expression ratio (RASGRP1/APTX) has been 
found that accurately predicts response to the drug tipifarnib 
in patients with acute myeloid leukemia (AML) (34). The 
TSP algorithm was applied to transcriptional profiles of bone 
marrow samples from newly diagnosed AML patients—
including 13 responders and 13 patients with progressive 
disease, achieving 92.3% sensitivity and 100% specificity 
(96% accuracy) in LOOCV. External validation of the two-
gene classifier was performed in an independent dataset of 
54 samples from patients with relapsed or refractory AML 
(10 responders, 44 with progressive disease). When applied 
to the independent test set, the classifier predicted tipifarnib 
response with sensitivity of 80% and specificity of 52.3%. 
This reduction in accuracy compared to LOOCV may derive 
from the initial very small sample set not being sufficient to 
represent the amount of variance in the population, and thus 
further data collection and classifier development is needed. 
Still, the results are encouraging considering the subtle dif-
ference of the phenotypes being considered and the small 
amount of training data.

In another study, Weichselbaum et al., (35) applied k-TSP to 
a previously determined gene expression signature—the IFN-
related DNA damage signature (IRDS)—in order to develop a 
therapy-predictive marker of adjuvant chemotherapy for meta-
static breast cancer. 78 breast cancer patients were divided into 
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Beyond TSP and k-TSP

Top-Scoring Pair of Groups:  In an effort to identify a 
robust common cancer signature, Xu et al., (18) performed 
a large-scale meta-analysis of cancer gene expression data-
sets in order to identify a universal cancer signature, and 
validated their signature using a variant of RXA to separate 
cancer from normal samples across a wide range of can-
cers. More specifically, the authors integrated nearly 1,500 
microarray gene expression profiles from 26 published 
cancer data sets across 21 major human cancer types using 
two different Affymetrix microarray platforms. Michiels  
et al., (37) had shown that molecular signatures are strongly 
dependent on the samples in the training data and advocated 
the use of repeated random sampling for signature valida-
tion. In (18), the authors applied an RXA method, referred 
to as the top-scoring pair of groups (TSPG) classifier, com-
bined with a repeated random sampling strategy to iden-
tify of a common cancer signature consisting of 46 genes. 
The TSPG classifier is an extension of the TSP classifier 
from two individual genes to two groups of genes. Being 
an RXA method, it is based entirely on the internal ranking 
of the genes in the signature. The signature is divided into 
two disjoint groups, and the average rank is computed for 
each group and two averages are compared. The decision 
rule is again maximum likelihood; to choose the class for 
which the observed ordering between the two rank aver-
ages is most likely. It can also be shown that TSPG is a 
special case of k-TSP, where k is the product of the two 
group sizes. Given a new expression profile, the classifier 
was found to discriminate most human cancers from nor-
mal tissues, including a validation on six different inde-
pendent test datasets generated from different Affymetrix  
microarray platforms. Upon further validation, this cancer 
signature may be used to improve understanding of cancer 
pathogenesis and therapeutic targets, and hence lead to the 
development of effective treatment regimens.

Top-Scoring Triplets:  Lin et al., (17) proposed an exten-
sion of TSP which bases prediction entirely upon the rela-
tive expression ordering among three genes, referred to 
as the “top-scoring triplets” (TST). The decision rule is 
to select the class which makes the observed ordering the 
most likely. In many cases, one gene serves as a “reference” 
whose expression falls between the expressions of two dif-
ferentially expressed genes. The objective is to achieve a 
more discriminating decision mechanism than TSP but with-
out sacrificing interpretability. The investigators explored 
the different roles the three genes play in the decision 
mechanism from previous cancer studies, and also applied 
this methodology to two problems in breast cancer: a cross 
study validation based on predicting ER status and a clini-
cally relevant application to predicting germ-line BRCA1 
mutations. Further analysis on protein-protein interactions 

among the triplets of genes aided in understanding the bio-
logical roles of the classifiers.

Conclusions and Future Directions

The advent of high-throughput measurement technologies 
for the comprehensive, rapid, and inexpensive detection of 
biomolecular signatures in human cells, tissues, and serum 
has led to the generation of a tremendous amount of raw, 
unprocessed information. However, analyzing and inter-
preting these data in order to enhance our understanding of 
human health and genetic diseases (e.g., cancer) continues 
to be a challenge in the scientific community. In the case 
of gene expression microarray data, standard statistical 
learning methods have been used to identify decision rules 
that can accurately distinguish disease phenotypes. These 
techniques have been shown to produce accurate classi-
fiers, but still lack the convenience and simplicity desired 
for extracting any underlying biological rationale for the  
decision rules. 

In this review, we have provided a detailed description 
of the concepts and methodologies of the TSP and k-TSP 
classifiers, two bioinformatics techniques for gene expres-
sion-based molecular classification based on the analysis 
of relative expression values. Due to the simplicity of the 
classifier and ease of biological interpretation, as well as its 
independence to data normalization and parameter-fitting, 
the TSP and k-TSP methods have been applied in sev-
eral studies to perform molecular classification of various 
pathologies, primarily cancer. These methods, as we have 
shown above, display highly accurate classification perfor-
mance in distinguishing a broad range of disease phenotypes 
(e.g., cancer vs. normal), cancer subclasses (e.g., AML vs. 
ALL, GIST vs. LMS), disease outcomes (e.g., metastasis, 
survival), and diverse human pathologies assayed through 
blood-borne leukocytes. We have also shown that natural 
extensions of the basic TSP and k-TSP methods can incorpo-
rate more genes and allow for indirect microarray data inte-
gration and hence large-scale meta-studies. Further work on 
RXA includes the use of biological network information for 
phenotype classification and biological discovery as well as 
decision tree-based strategies for classification of multiple 
disease phenotypes. 
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