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Classifying Gene Expression Profiles from
Pairwise mRNA Comparisons∗

Donald Geman, Christian d’Avignon, Daniel Q. Naiman, and Raimond L.
Winslow

Abstract

We present a new approach to molecular classification based on mRNA comparisons. Our
method, referred to as the top-scoring pair(s)(TSP)classifier, is motivated by current technical and
practical limitations in using gene expression microarray data for class prediction, for example to
detect disease, identify tumors or predict treatment response. Accurate statistical inference from
such data is difficult due to the small number of observations, typically tens, relative to the large
number of genes, typically thousands. Moreover, conventional methods from machine learning
lead to decisions which are usually very difficult to interpret in simple or biologically meaningful
terms. In contrast, theTSPclassifier provides decision rules which i) involve very few genes and
only relative expression values (e.g., comparing the mRNA counts within a single pair of genes);
ii) are both accurate and transparent; and iii) provide specific hypotheses for follow-up studies. In
particular, theTSPclassifier achieves prediction rates with standard cancer data that are as high
as those of previous studies which use considerably more genes and complex procedures. Finally,
theTSPclassifier is parameter-free, thus avoiding the type of over-fitting and inflated estimates of
performance that result when all aspects of learning a predictor are not properly cross-validated.
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1 Introduction

Using DNA microarray technology, it is now possible to measure the expres-
sion levels of thousands of genes simultaneously (Duggan et al. (1999); Lipshutz
et al. (1999); Lockhart and Winzeler (2000)). However, the number of pro-
file measurements per experimental study remains quite small, usually fewer
than one hundred (Hughes et al. (2000); Pomeroy et al. (2002)). When mea-
sured against the complexity of the systems being studied, the amount of data
available for modeling and inference is therefore severely limited. Discovery
of the underlying structure within these data, in particular correlation pat-
terns or even higher-dimensional interactions, is exceedingly difficult in this
small-sample regime.

The small-sample dilemma in the statistical analysis of microarray data
is well-documented in the literature (Dudoit and Fridlyand (2003); Sebastiani
et al. (2003); Simon et al. (2003); West et al. (2001)). In view of well-known
tradeoffs in computational learning theory between sample size and model
complexity (Hastie et al. (2001)), and between “bias” and “variance” (Geman
et al. (1992)), some simplifying assumptions (such as the reduction of the
dimensionality of the data and/or the family of classifiers) appear necessary.
Indeed, there is already evidence (Dudoit and Fridlyand (2003)) that relatively
simple classification methods as in Tibshirani et al. (2002) are competitive with
more complex ones. Our results support and extend this finding.

Another limitation of current methods for classifying gene expression pro-
files is the “black box” dilemma. Standard methods in statistical learning
and pattern recognition are routinely applied to microarray data, examples
being neural networks (Bicciato et al. (2003); Bloom et al. (2004); Khan
et al. (2001)), decision trees (Boulestiex et al. (2003); Dettling and Buhlmann
(2003); Zhang et al. (2003)) and support vector machines (Peng et al. (2003);
Yeang et al. (2001)). Typically, this results in predictions based on nonlinear
functions of many expression values, and consequently highly complex deci-
sion boundaries between the classes of interest. Such boundaries are then
difficult to summarize in simple terms or to characterize in a manner which is
biologically meaningful.

We address both problems – small samples and lack of interpretability – by
basing our predictions entirely on pairwise comparisons. More specifically, we
attempt to differentiate between two classes by finding pairs of genes whose
expression levels typically invert from one class to the other. Our approach
is a particular instance of a larger class of rank-based methods, all of which
are characterized by immediately replacing expression levels by their corre-
sponding ranks (i.e., most heavily expressed, second most heavily expressed,
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etc.) determined across all genes assayed using a single DNA microarray; this
step is equivalent to recording the gene having a larger expression intensity for
each pair of genes on a DNA microarray. Rank-based methods are therefore
robust to quantization effects and are invariant to pre-processing designed to
overcome chip-to-chip variation, such as normalization methods (Yang et al.
(2001)), under the very mild (and nearly universally satisfied) assumption that
the normalization procedure is monotonic in the expression values, and hence
preserves ordering.

There is no question that information is lost using a rank-based procedure.
However, the results reported here, obtained using several different data sets
and based entirely on internal comparisons within the profile, demonstrate
that the amount of information residing in the ordering of gene expression
levels is more than sufficient to reliably perform classification and other tasks.
Indeed, in some cases, accurate prediction can be achieved by comparing the
expression levels of a single pair of genes.

In the following sections, we focus on a particularly simple example of a
comparison-based approach to classifying gene expression profiles – the “top-
scoring pair(s)” or TSP classifier. A family of gene pairs is isolated and then
a profile is classified based on a decision rule which only involves comparing
mRNA abundance in each pair and then aggregating the results. For the TSP
classifier, the participating pairs are those which achieve the largest “score”
relative to a simple measure of discrimination. Scores are estimated from the
training data and there are no parameters to tune since the number of top-
scoring pairs is completely determined by the data. In some cases, there is a
single pair of genes achieving the top score and classification then amounts to
choosing the class under which the observed ordering within this pair is most
likely.

We demonstrate the efficacy of this method on several gene expression data
sets involving breast, prostate and leukemia cancers. We also illustrate how
the TSP method can generate a specific hypothesis for follow-up studies. Our
classification rates are comparable to the best results reported in the literature;
moreover, in some cases those results are not properly validated (e.g., by fully
cross-validating parameter choices) and may be biased (Simon et al. (2003);
Dudoit and Fridlyand (2003)). In addition, the TSP classifier usually employs
considerably fewer genes and is easier to interpret.

Our approach to selecting informative pairs of genes is but one example
of attempting to exploit information residing in gene-gene interactions. De-
spite the evident importance of capturing such joint statistics, the literature
is sparse, due perhaps to the sample size limitations alluded to earlier. The
co-expression of genes in the cell cycle is considered in Li (2002) but there

2

Statistical Applications in Genetics and Molecular Biology, Vol. 3 [2004], Iss. 1, Art. 19

http://www.bepress.com/sagmb/vol3/iss1/art19



is no connection with classification. The idea of evaluating genes in pairs in
order to select discriminating genes for classifying microarray data first ap-
pears in Bø and Jonassen (2002). A subset of k gene pairs is selected based
on a recursive procedure and a scoring criterion which involves diagonal linear
discriminant analysis and a two-sample t-test. Using the resulting 2k genes
in conjunction with standard classifiers, the authors demonstrate an improve-
ment over feature selection based on individual genes. In particular, there is
nothing rank-based and the pairing of genes is ignored during classification.
They also report good prediction rates for two cancer data sets using a few
tens of genes, although the parameter choices (such as k) are not part of the
cross-validation. Our results corroborate their findings. Further, we show that
the information in gene pair interactions can be directly exploited using simple
comparisons for both scoring and decision-making.

In the following section we describe our rank-based approach to pair selec-
tion and classification in more detail. The experiments with three cancer data
sets are presented in §3, including comparisons with other results in terms of
accuracy and efficiency as well as a brief description of the biological relevance
of the top-scoring pairs. We conclude in §4 with some remarks about ratios of
concentrations, estimating prediction rates and sample size.

2 Comparison-Based Classification

Consider G genes whose expression levels X = {X1, X2, ..., XG} are measured
using DNA microarrays and regarded as random variables. Each profile X

has a true class label in {1, 2, ..., C}. For simplicity, we assume C = 2, al-
though the results extend to higher numbers of classes. We focus on detecting
“marker gene pairs” (i, j) for which there is a significant difference in the prob-
ability of Xi < Xj from class 1 to class 2. Profile classification is then based
on this collection of distinguished pairs. Here, the quantities of interest are
pij(c) = P (Xi < Xj|c), c = 1, 2, i.e., the probabilities of observing Xi < Xj

in each class. These probabilities are estimated by the relative frequencies of
occurrences of Xi < Xj within profiles and over experiments. Consequently,
for our analysis it is sufficient to know the ranks of the expression values
within profiles on each microarray. This approach differs from nonparametric
methods for detecting differentially regulated genes (see, e.g., Sebastiani et al.
(2003)) in which ranking is done across experiments for each fixed gene.

Let ∆ij = |pij(1) − pij(2)| denote the “score” of (i, j). An example of
computing a score is provided in Table 1. We seek gene pairs with “large”
scores.
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Xi < Xj Xi > Xj

class 1 50 2 52
class 2 3 47 50

Table 1: An example of scoring a gene pair from the prostate study. Expression
levels for 12, 600 probes are obtained for 52 profiles associated with class 1
(prostate tumors) and 50 associated with class 2 (normal tissue). (See the
Appendix for details on this study, which involves detecting prostate cancer.)
For a particular pair (i, j) of genes we have identified, the 102 profiles are
labeled according to the above 2×2 contingency table. These data lead to the
probability estimates pij(1) = 50/52 and pij(2) = 3/50, which results in the
score ∆ij = |50

52
− 3

50
| = .902. Since pij(1) > pij(2), the classifier based on this

gene pair votes for class 1 for a profile with Xi < Xj and for class 2 otherwise.

2.1 Gene Pair Selection

Detection of marker gene pairs is a problem in feature selection, and plays
the same role in our analysis as finding individual marker genes does in more
standard methods (Dudoit et al. (2002); Sebastiani et al. (2003); Tibshirani
et al. (2002); Stolovitzky (2003)). One option for pair selection might be to
first select differentially-regulated or “marker genes” and only then proceed
from individual genes to gene pairs by restricting the search for marker pairs
to pairs of these marker genes. But two major drawbacks would ensue: 1)
such post-filtering results would no longer be invariant to normalization; and
2) by construction, only differentially expressed genes could appear in the
selected comparisons, thereby possibly losing discriminating pairs in which at
most one gene is itself differentially expressed. We therefore adopt a more
straightforward method based on direct search: We estimate ∆ij for every
distinct pair (i, j) and apply a selection rule based on the magnitude of ∆ij.
An example of such a decision rule, and the one we use throughout this paper,
is to rank the scores ∆ij from largest-to-smallest and select all pairs achieving
the top score.

2.2 Classification

Pair selection results in a family P of distinguished pairs. Again, the gene pairs
in P are precisely those whose score is maximal; hence the number of pairs
in P is not a parameter of the system but rather data-driven. For medium
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sample sizes, there are usually only a few pairs which achieve the top score;
for example, in two of the three experiments presented here there is only one
such pair, and there are three pairs in the other experiment. For very small
sample sizes there may be many pairs; an example is given at the end of §3.

Any standard classification algorithm may then be implemented using P as
input. We are interested in algorithms for which classification decisions have
a simple interpretation. Voting is an example of such a decision algorithm,
where individual votes are driven by maximum likelihood. In this method,
given a new expression profile X, an individual pair (i, j) in P votes for the
class for which the observed ordering between Xi and Xj is more likely; see
the example in Table 1. That is, if we observe Xi < Xj, then pair (i, j) votes
for class 1 if pij(1) ≥ pij(2) and votes for class 2 otherwise. The class with
the most votes is chosen. We refer to the resulting classifier as the top scoring
pair(s) classifier, henceforth denoted TSP .

It is noteworthy that for classification based on a single gene pair, the
sum of misclassification probabilities over the two classes can be expressed as
1 − ∆ij, which provides a natural justification for score maximization.

The procedure of tallying individual votes, while attractive from the point
of view of simplicity (Dudoit et al. (2002)), also can be derived as a maximum
likelihood rule under the simplifying assumptions that (i) individual compar-
isons are conditionally independent given the class, and (ii) for some p we have
either pij(c) = p or pij(c) = 1 − p for all (i, j) ∈ P and both classes c = 1, 2.

2.3 Error Estimation

In estimating the (generalization) error rate of a classifier, gene pair selection
was performed within the cross-validation loop. With n samples and (leave-
one-out) cross validation (CV), this means choosing n separate subsets P,
one for each profile “held out” during training, then classifying that profile.
(Other methods for estimating the error rate could be considered; see §4.) In
particular, both the actual top-score, as well as the set of pairs which achieve
it, may vary with the sample left out. The estimated prediction rate is then
1 − e/n where e ∈ {1, ..., n} is the number of errors observed in the cross-
validation.

For our procedure there are no parameters to select inside the CV loop.
For other procedures that do require parameters, e.g., k-nearest neighbors,
random forests and support vector machines, the estimated prediction rates
may be severely biased if performance is sensitive to these parameters and they
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are not properly cross-validated (using an inner CV loop to choose parameter
values) (Dudoit and Fridlyand (2003); Simon et al. (2003); West et al. (2001)).
The TSP classifier avoids this source of bias.

3 Experiments

The TSP classifier was evaluated on three class prediction problems: Predict-
ing the status of lymph nodes in patients with breast tumors (Breast study);
Classifying profiles into leukemia subtypes (Leukemia study); Distinguish-
ing prostate tumors from normal profiles (Prostate study). Details involving
these data (references, chips, samples sizes, web addresses, etc.) can be found
in the Appendix.

3.1 Top-Scoring Pairs

There are three top-scoring pairs for the Leukemia data and only one for
the Breast and Prostate data; the actual top scores, and corresponding gene
pairs, are identified in Table 2, together with their individual t-statistics. Some
of these genes would not be regarded as “differentially regulated” on the basis
of their individual t-statistics. Notice that the same gene may appear in more
than one pair.

3.2 Score Significance

The significance of a score can be assessed by a permutation analysis. For
any given study, artificial data sets can be constructed by randomly permut-
ing the class labels, hence maintaining the sample sizes n1 and n2 of the two
classes. The resulting top scores are then indicative of those obtained when at-
tempting to classify based on profile labels which cannot be predicted from the
expression values while maintaining the overall statistical dependency struc-
ture among the genes. In Figure 1, we display the histograms of top scores for
the Breast and Leukemia studies based on 1000 permutations. In the latter
case, for example, there is a top score for each of the 1000 random assignments
of class labels to the n = 72 samples constrained by n1 = 47 and n2 = 25.
From the permutation analysis we can compute a p-value associated with a
given score obtained in the actual data by taking the fraction of permuted
data sets in which a score at least as large is obtained. This p-value can be
interpreted as the probability of observing such a large score under the null hy-
pothesis that the pairs are non-informative for classification. No score among
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Problem Score Genbank ID 1 t-stat 1 Genbank ID 2 t-stat 2
Breast 0.838 X03453 4.39 X82634 2.25

Prostate 0.902 M84526 7.46 M55914 4.13
Leukemia 0.979 L11373 1.99 X95735 10.92
Leukemia 0.979 D86976 1.60 X95735 10.92
Leukemia 0.979 J05243 7.87 M23197 6.62

Gene descriptions

X03453 Bacteriophage P1 cre gene for recombinase protein
X82634 Homo sapiens mRNA for hair keratin acidic 3-II
M84526 Human adipsin/complement factor D mRNA, complete cds
M55914 Homo sapiens c-myc binding protein (MBP-1) mRNA, complete cds
L11373 Human protocadherin 43 mRNA, complete cds for abbreviated PC43
X95735 Homo sapiens mRNA for zyxin
J05243 Human nonerythroid alpha-spectrin (SPTAN1) mRNA, complete cds
M23197 Human differentiation antigen (CD33) mRNA, complete cds
D86976 Human mRNA for KIAA0223 gene, partial cds

Table 2: The top scoring pair(s) for each study, together with the top score
and individual t-statistics.

the 1000 permutation trials came near the top score actually observed (see
Figure 1) on either the Leukemia or Prostate data, and hence the estimated
p-values are virtually zero. For the Breast data the estimated p-value of the
top score is 0.001.

3.3 Classification Results

An intuitive appreciation of the nature of decision-making for the TSP clas-
sifier (i.e., predicting the class labels based entirely on the observed ordering
among the pairs obtaining the top score) can be gleaned from Figure 2. For
each study, there is a scatter plot of the expression levels for two genes – the
unique top-scoring pair for the Breast and Prostate data and one of the
three top-scoring pairs for the Leukemia data.

The estimated (correct) prediction rate of the TSP classifier for each study
is displayed in Table 3 along with other reported results (and indicated ref-
erences) for these data. All TSP results are based on leave-one-out cross-
validation.

3.3.1 Breast Study

In predicting the status of lymph nodes (affected or non-affected) in the
Breast study, there are nine errors and three ties out of the 49 cross-validation
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Figure 1: The distribution of top scores for a random class label permutation
analysis. The locations of the top score on the real Breast and Leukemia

data sets are shown in red; the estimated p-values are 0.001 and 0 respectively.
The top-score histogram for the Prostate data looks qualitatively the same
as the one for Leukemia, and the maximum score achieved among all of the
artificial data sets is 0.586; the score observed on the real data is ∆ = 0.902.
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Figure 2: Scatter plots for a top pair of genes for each study. The two classes
are represented using red and blue, the axes represent the expression levels of
the two genes and the dotted line y = x represents the decision boundary.
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loops; random tie-breaking then results in 10.5 errors on average which corre-
sponds to an estimated classification rate of 79%. For comparison, estimated
error rates for these data, also based on leave-one-out cross-validation and us-
ing a wide variety of common machine learning techniques, are summarized in
Dudoit and Fridlyand (2003) for varying numbers of pre-filtered genes: m = 10,
50, 100, 200, 500, 1000, and m = 7129. Most parameter choices are external
to the cross-validation in estimating the error rates listed in the main compar-
ison in Dudoit and Fridlyand (2003); see the comprehensive discussion there.
These external parameters include those which are method-specific as well as
the choice of the number of genes that are pre-filtered.

For example, in the case of support vector machines, there are 48 experi-
ments corresponding to choosing the kernel (linear or radial), the penalty, the
filtering method and the number genes to be filtered; the number of errors
varies considerably according to the protocol. Since the TSP classifier based
on a unique top-scoring pair can be interpreted as a linear decision rule, albeit
trivial, it can be seen as belonging to the same family of classifiers as a support
vector machine with a linear kernel.

All of these methods are more complex than the TSP classifier and rel-
atively few parameter choices yield better results. Moreover, it is not clear
that some of these differences would remain after proper cross-validation of
the other methods. One fully cross-validated experiment was performed in
Dudoit and Fridlyand (2003) for k-NN and naive Bayes, resulting in 9 errors
in both cases (and always using 10 genes).

3.3.2 Leukemia Study

The feasibility of cancer class prediction (as well as class discovery) based on
gene expression monitoring was established in the pioneering work of Golub
et al. (1999). The test case was separating AML from ALL leukemias (see
Table 3 for a brief summary of the method in Golub et al. (1999)). Prediction
rates are reported for a classifier based on fifty genes using cross-validation to
measure accuracy on the initial data set of n = 38 acute leukemia samples (two
samples are labeled “uncertain” and remaining 36 are correctly classified) as
well as on an independent sample of 34 samples (making “strong predictions”
for 29, all correct). Following the same protocol for training and testing, the
TSP classifier correctly classifies 31 of the 34 samples (all three mistakes on
ALL samples). On the combined data sets (see the Appendix), the TSP clas-
sifier uses five genes (the three pairs listed in Table 2) and classifies 68 samples
correctly out of 72.
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Problem Sample Size TSP (# genes) Previous Results (# genes)
Breast 49 79% (2) 41%-88% (10-7129)

Leukemia 72 94% (5) 85%,95% (50)
Prostate 102 95% (2) 86%-92% (4-256)

Table 3: Some comparisons of performance between the TSP classifier and
previously reported prediction rates. All TSP results are based on leave-one-
out cross-validation. Breast: The range 41% − 88% (Dudoit and Fridlyand
(2003)) covers both parameter settings, including the number of genes, and
classification methods: k-nearest neighbors (8−26 errors in 49 samples), diago-
nal linear discriminant analysis (8−19 errors), diagonal quadratic discriminant
analysis (11 − 26 errors), logitboost (9 − 21 errors), random forests (6 − 20
errors) and support vector machines (7−29 errors). More details appear in the
text. Leukemia: In Golub et al. (1999), first the most “informative genes” are
discovered by correlating profiles with ideal class identity vectors (a “signal-
to-noise” variation on the t-statistic) and choosing the most significant ones
based on a permutation test; these genes are then combined with a weighted
voting scheme involving the correlations, class averages and a threshold for
determining the “prediction strength” of a vote. The two stated rates, 85%
and 95%, refer, respectively, to validation on the test set (see text) and leave-
one-out cross-validation on the training set. Prostate: In Singh et al. (2002),
a k-nearest neighbor classifier was applied to m genes (for selected values of
m from 1 to 256) identified by measuring differential expression from normal
to tumor samples using a variation of the signal-to-noise statistic (Golub et al.
(1999)). For each m, prediction error was estimated using leave-one-out cross-
validation; the range 86% − 92% corresponds to 4 ≤ m ≤ 256; the choice of k
is not specified in Singh et al. (2002).
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Biological Context: The first two pairs in Table 2 compare expression lev-
els of L11373 (protocadherin gamma subfamily c,3; PCDHGC3) and D86976
(minor histocompatibility antigen; HA-1) with that of X95735 (zyxin; ZYX).
ZYX is a member of the LIM protein family, co-localizes with integrins at
sites of cell-substratum adhesion and is postulated to serve as a docking site
for the assembly of protein complexes involved in regulating cell motility. The
expression level of ZYX is up-regulated substantially in AML (382 in ALL
versus 3258 in AML). Average expression levels of PCDHGC3 and HA-1 were
(respectively) 1349 and 1396 in ALL versus 1063 and 1057 in AML. Differences
between expression level in ALL and AML were not significant. Thus, PCD-
HGC3 and HA-1 may function in the TSP classifier as reference genes against
which up-regulation of ZYX becomes highly discriminatory. Many other ma-
chine learning methods have also identified ZYX as a highly discriminating
marker of ALL versus AML (Soukop and Lee (2003); Hwang et al. (2002);
Siedow (2001); Golub et al. (1999)). The third pair is J05243 (the human non-
erythroid -spectrin SPTAN1) and M23197 (the myeloid differentiation CD33
antigen). CD33 is well recognized as being a cell surface marker for AML (Grif-
fin et al. (1983); Bradstock et al. (1989)), as it is generally not expressed in
ALL (average expression level 174) but is expressed in most myeloid leukemias
(average expression level 861). Expression of SPTAN1, which is involved in
receptor binding and actin crosslinking, is elevated in ALL (average expres-
sion level 868) relative to AML (average expression level 162). This differential
expression pattern produce a highly discriminating inversion of class probabil-
ities.

3.3.3 Prostate Study

The results in Singh et al. (2002) confirmed a strong correlation between pat-
terns of gene expression obtained at the time of diagnosis of prostate cancer
and various clinical and pathological aspects of the disease. Specifically, it
was established that “sufficiently robust” gene expression differences could be
found to predict the identity of prostate samples. Results are reported for a
k−nearest neighbor classifier (with Euclidean distance) applied to m genes for
selected values of m (see Table 3). Prediction rates are estimated separately
for each m using leave-one-out cross-validation, yielding a range from 86% to
92%, with top performance for m ≥ 4. The choice of k does not appear to
be cross-validated, in which case the estimated prediction rates may be biased
upwards.
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Biological Context: The top scoring gene pair using the TSP classifier
is M84526 (human adipsin complement factor D; DF) and M55914 (human
c-myc binding protein; MBP-1). C-myc is a DNA-binding phosphoprotein
protooncogene involved in the regulation of cell growth and differentiation and
binding of MBP-1 to c-myc leads to tumor suppression (Pancholi (2001)). DF
is a serine protease secreted by adipocytes into the bloodstream and functions
as part of the alternative complement pathway of the innate immune system
(Walport (2001)). Adipsin was identified as one of the top 50 marker genes in
Singh et al. (2002), however, c-myc was not. Nonetheless, the joint behavior of
c-myc and adipsin is highly discriminative of non-tumor versus prostate tumor
samples, yielding a prediction rate of 95%.

3.3.4 A Very Small Sample Case

We applied the TSP classifier to one extreme case in terms of the ratio of
sample size to the number of genes: We considered classifying gene expression
profiles consisting of 22, 283 probes for 22 samples of myocardial tissue samples
of patients diagnosed with idiopathic cardiomyopathy (IDCM) (12 samples)
versus control (10 samples); these data are described in the Appendix. Pre-
vious studies have shown that virtually perfect discrimination between IDCM
and controls can be achieved by methods including hierarchical clustering [36]
and multidimensional scaling (unpublished results). Not surprisingly, many
pairs provide perfect discrimination between IDCM and controls, so that best
observed score is maximal (∆ = 1.0), and this score is realized by a large
number (2, 460) of gene pairs. Some of these top-scoring pairs are surely spu-
rious due to the very small sample size and the very large space of possible
gene pairs. Despite this, the cross-validated 100% prediction rate demonstrates
that the discriminating power of the entire family of pairs estimated to achieve
the maximal score is not due to chance. (Were the pairs detected purely by
chance, then, for each loop of CV, each such pair would vote correctly with
probability one-half, which is inconsistent with the cross-validated estimate.
Consequently, many of the high-scoring pairs are genuinely informative.) Thus
accuracy is maintained but at the possible expense of transparency. However,
further analysis in this study (e.g., determining which pairs are most discrim-
inating) is limited by the very small sample size.
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4 Discussion

We have introduced a new classification methodology for microarray data
based entirely on pairwise comparison of relative gene expression levels. Basing
prediction on ratios of concentrations provides a natural link with biochemi-
cal activity which can only become stronger – more biologically meaningful –
when mRNA abundance is replaced by actual protein expression data. Indeed,
the full potential of this method may not be realized until high-throughput
protein comparisons become practical.

Moreover, concrete hypotheses about the predictive significance of specific
mRNA comparisons are generated naturally by the method, and follow-up
studies could be focused on the corresponding list of gene pairs. Examples were
provided in the cases of separating leukemia subtypes and detecting prostate
cancer.

We have chosen leave-one-out (“n-fold”) CV to estimate the error rate of
the TSP classifier in order to provide an “apples-to-apples” comparison with
the other work we cite. In addition, this method is well-known to have low
bias. On the other hand, methods such as k-fold CV and bootstrap resampling
techniques have been asserted to have smaller variance (see, e.g., Efron (1983);
Efron and Tibshirani (1997)) and be more appropriate for microarray analysis
in many cases (Braga-Neto and Dougherty (2004)). For instance, with 10-fold
CV, the estimated error rates should be unbiased for a training set of size .9n
(rather than of size n) although sensitivity to the training set may be smaller
than with n-fold CV. Of course, performance is expected to degrade somewhat
due to the smaller number of training samples for constructing the classifier.

For the three data sets presented here the estimated prediction rate with
10-fold CV is consistent with the rates estimated with leave-one-out CV. Ear-
lier, we had included another study – the benchmark Golub data (Pomeroy
et al. (2002)). These data consist of gene expression profiles measured in em-
bryonal tumors of the central nervous system. One objective is to predict the
outcome of treatment for medulloblastoma tumors, with tissue samples labeled
as “non-survivor” (n1 = 21 samples) or “survivor” (n2 = 39 samples). The
prediction rate of the TSP classifier as measured by leave-one-out CV is 83%
(corresponding to 11 errors in 60 loops), which is substantially higher than
the rates reported in Dudoit and Fridlyand (2003) as part of the same large
comparison study cited earlier in connection with breast cancer. In fact, there
is a unique top-scoring pair (the human polyposis locus (DP1) gene (Genbank
ID M73547) and the human E2 ubiquitin conjugating enzyme UBE2D2 (Gen-
bank ID U39317) which appears to have biological interest; moreover, neither
of these genes was identified as being important to prediction of treatment
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outcome using prior classification methods (Pomeroy et al. (2002)) and nei-
ther turns up significant when tested for differential expression. Nonetheless,
in this case the estimated prediction rate with 10-fold CV is much lower than
with leave-one-out CV, more in line with the results using other methods. Due
to this ambiguity, we decided to remove this experiment.

We have focused our study on the TSP classifier in which predictions are
based entirely on the top-scoring pairs. In most of the cases we have encoun-
tered there is in fact a unique top-scoring pair. However, there may be many
pairs of genes whose relative expression values is informative. Moreover, the
top-scoring pair may change when the training data is even slightly perturbed
by adding or deleting a few samples. One avenue of future work is to find a
more stable, comparison-based signature than the top-scoring pair or pairs.
For example, one may also consider a k − TSP classifier based on all pairs
achieving the k best scores. In this case, k is a parameter that should be esti-
mated using cross-validation, hence requiring a double loop of cross-validation
to estimate the generalization error. An investigation of the k − TSP clas-
sifier, and other extensions of the method introduced here, will be reported
elsewhere.

The results already provide strong evidence that discriminating compar-
isons among expression levels can be discovered even under conditions of small
sample size. Given the large number of variables (genes), we regard n = 100
as “small.” With somewhat larger samples, say several hundreds, the induc-
tion of modest-depth decision trees, based on successive entropy reduction
and using only comparison questions, becomes feasible, thereby maintaining
results which are both easy to interpret and invariant to normalization. The
corresponding decision rules would then be based on more complex mRNA
comparisons involving more than two genes. The methodology extends al-
most without modification to more complex and heterogeneous data sets, for
example consisting of mixed mRNA and protein abundances.

Finally, one could also envision modeling the statistical dependency struc-
ture among families of genes and proteins, for example regulatory pathways,
based on observed order statistics. With small amounts of data, it may only be
possible to collect reliable estimates of pairwise comparisons among expression
levels. More data could lead to estimating the order statistics of triplets, and
so forth. This provides a natural, hierarchical family of models which can be
adapted to the amount of data.
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5 Appendix: Data Sets

The first three sets of data, the main ones used to test the classifier, are
publicly available from the Kent Ridge Bio-medical Data Set Repository
(http://sdmc.lit.org.sg/GEDatasets/Datasets.html).

• Breast: Determining Lymph Node Status in Breast Tumor Samples:
The data (West et al. (2001)) consist of gene expression profiles mea-
sured in breast tumor samples. Profiles were obtained using Affymetrix
HuGeneFL arrays comprised of G = 7, 129 human probe sequences. One
objective was to improve predictions about the future course of disease
by accurately determining the status of the lymph nodes. Tissue samples
were labeled as “positive” (affected node present, n1 = 25 samples) or
“negative” (affected node absent, n2 = 24 samples).

• Leukemia: Classifying Profiles from Different Leukemia Subtypes: The
data (Golub et al. (1999)) consist of gene expression profiles with G =
7, 129 probes (6, 187 human genes) from 27 bone marrow samples of ALL
(acute lymphoblastic leukemia) and from 11 samples of AML (acute
myeloid leukemia), also obtained with Affymetrix HuGeneFL arrays.
There is also a test set consisting of 34 samples (20 ALL and 14 AML).
In order to utilize the same method of error estimation (namely, leave-
one-out cross-validation) on all studies, we combined these two data sets
into one of size n = 72 with n1 = 47 ALL samples and n2 = 25 AML
samples.

• Prostate: Distinguishing Tumors from Normal Profiles: The data is
drawn from the study of prostate cancer reported in Singh et al. (2002),
where three separate class prediction problems are investigated based
on expression values for G = 12, 600 genes and ESTs derived from
Affymetrix HU95Av2 microarray chips. One problem is to assign pro-
files to either tumor or normal tissue class (the others involve predicting
clinical outcome and pathological features). There are n1 = 52 prostate
tumor samples and n2 = 50 non-tumor samples, selected from among
several hundred radical prostatectomy patients.

• Cardiac: Classifying Gene Expression Profiles from Control Versus
Failing Human Heart Tissue. Recently, we have used the Affymetrix
GeneChip HG-U133A oligonucleotide array with G = 22, 283 probes to
identify genes that are differentially regulated in left ventricular mid-
myocardial tissue isolated from patients diagnosed with end-stage id-
iopathic dilated cardiomyopathy (IDCM) versus that from patients in
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which cause of death is unrelated to heart disease (Yung et al. (2004)).
Experiments were conducted on n = 22 preparations of which n1 = 10
were tissue samples obtained from control tissue and n2 = 12 were from
patients diagnosed with IDCM (all data are available at www.ccbm.jhu.edu).
The goal is to correctly classify gene expression profiles into control ver-
sus IDCM categories.
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