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Abstract We present a new hierarchical strategy for fine-
grained categorization. Standard, fully automated systems
report a single estimate of the category, or perhaps a ranked
list, but have non-neglible error rates for most realistic sce-
narios, which limits their utility. Instead, we propose a semi-
automated system which outputs a it confidence set (CS)—a
variable-length list of categories which contains the true one
with high probability (e.g., a 99 % CS). Performance is then
measured by the expected size of the CS, reflecting the effort
required for final identification by the user. The implemen-
tation is based on a hierarchical clustering of the full set of
categories. This tree of subsets provides a graded family of
candidate CS’s containing visually similar categories. There
is also a learned discriminant score for deciding between
each subset and all others combined. Selection of the CS is
based on the joint score likelihood under a Bayesian network
model. We apply this method to determining the species of
a plant from an image of a leaf against either a uniform or
natural background. Extensive experiments are reported. We
obtain superior results relative to existing methods for point
estimates for scanned leaves and report the first useful results
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for natural images at the expense of asking the user to ini-
tialize the process by identifying specific landmarks.
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1 Introduction

We study fine-grained categorization, the task of distin-
guishing among sub-categories of a more basic category,
such as an object or shape class, focusing on identifying
botanical species from leaf images. Whereas people can
usually immediately recognize instances from basic cate-
gories (trees, dogs, etc.), fine-grained categories (e.g., species
of plants, breeds of dogs) are usually recognized only by
experts. The difficulty arises because taxonomic categories
often have very fine differences which are hard to notice for
the common eye. Figure 1 shows examples from three dif-
ferent leaf species which are evidently visually very similar
in appearance. Another source of difficulty is the large vari-
ability in shape, color and texture within leaves of the same
species, as well as changes due to viewpoint. For instance,
leaves may exhibit different appearances due to local con-
text, such as location and climatic conditions, as shown in
Fig. 2 (additional examples can be found in Figures S1-S7).
They may also vary in form and size even along a single
stem as they develop (known as leaf heteroblasty); see Figure
S8. Finally, there may be a great many biologically distinct
fine-grained categories, e.g., about 300 breeds of dogs, and
over 10,000 species of birds, 200,000 species of plants and
6,000,000 species of insects are currently known.

Due to these challenges, identifying plant species can be
onerous and time-consuming even for skilled taxonomists,
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Fig. 1 High visual similarity among species. Three different species
are displayed: a Quercus ilex. b Ilex aquifolium. ¢ Quercus coccifera
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Fig. 2 Large variability within the same species. Displayed are exam-
ples from Quercus ilex (top row), Fraxinus ornus (middle row) and
Corylus avellana (bottom row)

and nearly impossible for novices. Generally, the situation
is the same in other domains of fine-grained categorization,
and raises the question of what extent of semi-automation
is required to provide useful results. In particular, how
can we minimize human intervention while ensuring near-
perfect sensitivity, i.e., assuring that the true category is
among the ones reported by the system? To this end, we
employ the user, with the goal of achieving something sen-
sible between the two extremes of an inaccurate but fully-
automated identification and a very accurate but fully-manual
identification.

The baseline scenario is the standard one with no human
intervention: given animage of aleaf, usually scanned against
a flat background, the system automatically provides a sin-
gle estimate of the true species. Even with scanned leaves,
the utility of this approach is questionable due to relatively
high error rates on large databases which contain very similar
species and display high variability within the same species.
This motivates the design of semi-automated systems. One
natural possibility is to envision human participation at the
end of the process in the sense of final disambiguation. That
is, given a test image, instead of providing a single estimate,
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Fig. 3 Examples of unconstrained leaf photographs. One can photo-
graph a a picked leaf, b a branch or ¢ a foliage

the system returns a set of candidate species, but constrained
to contain the true species with high probability, and the
degree of human effort needed is measured by the average
size of the set of candidates. In analogy with classical para-
meter (and Bayesian) estimation in Statistics, we refer to such
a pruned list as a confidence set or just CS, and as a P% CS
when the confidence level is P/100.

The degree of the user intervention is then data-dependent,
and can range from non-existent (when the CS is a singleton)
to significant in ambiguous situations. More generally, for
example for natural photos of plants, the degree of interaction
between the user and the system may extend to having the
user play an important role at both the beginning and the end
of the process, with the algorithm in between, in order to
still guarantee a near-perfect result. This idea is introduced
in Sect. 4.6.2, especially for identifying species of natural,
cluttered leaf images (see Fig. 3) without using segmentation
algorithms.

The model for generating the CS is generic and has four
key ingredients.

— Hierarchical Representation of Categories: A distin-
guished family of subsets of categories of varying sizes
indexed by the nodes of a binary tree. Learning is con-
trolled by restricting the confidence sets to those in the
hierarchy.

— Node Discriminant Scores: A score or test statistic for
each node of the hierarchy for the binary classification
problem of discriminating categories at the node from all
others.

— Statistical Model: The joint probability distribution of
the true category and the set of scores (see Sect. 4.5).
In the model here, the conditional distribution of scores
given category is a Gaussian Bayesian network.

— CS Selection Algorithm: A procedure for selecting the
node of minimal size subject to the constraint of con-
taining the true species with a given confidence level.
Performance is measured by the expected size of the CS
(Fig. 4).

The main contribution of this work is twofold: (i) the sta-
tistical framework above; (ii) an implementation for identify-
ing the species of a plant from an image of an extracted leaf,
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Fig. 4 Simple hierarchical
representations of four species.
a A semantic hierarchy: the
second level represents leaf
genera and the third level the
species. b A hierarchy based on
morphological leaf
characteristics: the second level
represents the leaf type (simple
or compound) and the third level
the species. A thumbnail from
each species is displayed
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illustrating the various levels of semi-automation. The imple-
mentation exploits domain-specific knowledge about land-
marks and taxonomy to automatically build the hierarchical
representation of species based on purely foliar characteris-
tics. As indicated earlier, we also introduce different identifi-
cation scenarios and tackle the problem of the cluttered leaf
images without using segmentation algorithms. State-of-the-
artresults are obtained in all cases in which comparisons with
previous work are possible. In particular, we achieve more
than 90% of accuracy while returning less than two estimates
(.e., |é‘| = 2) in average, on different challenging scanned
leaf datasets and outperform all previous work on image-
CLEF2011! cluttered photo category, including those who
made use of a manual segmentation; see Sect. 5.2.

The rest of the paper is organized as follows: after describ-
ing the related work in Sect. 2, we describe the mathematical
framework for defining and learning confidence sets in Sect.
3. The application to plant identification occupies the remain-
der of the paper: the representation of leaves in Sect. 4.1, the
features in Sect. 4.2, the hierarchy of species in Sect. 4.3, the
local scores in Sect. 4.4 and the probabilistic model in Sect.
4.5. In Sect. 4.6, we describe the different semi-automated
identification scenarios and experiments are reported in
Sects. 5 and 6. Finally, we draw some conclusions in Sect 7.

2 Related Work

Our work is related to existing work on fine-grained catego-
rization (Nilsback and Zisserman 2006; Larios et al. 2008;
Martinez-Muiioz et al. 2009; Wah et al. 2011; Duan et al.
2012; Yao et al. 2012; Cope et al. 2012; Yang et al. 2012;
Zhang et al. 2012; Liu et al. 2012), especially work on plant
species identification from leaf images (Belhumeur et al.
2008; Cope et al. 2012; Kumar et al. 2012; Goé€au et al. 2011,
2012). But our approach also relates to confidence sets, hier-

1 http://www.imageclef.org/2011/Plants
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archical classification and classification with class-selective
rejection.

Fine-grained categorization. Different recognition sys-
tems and object representations have been introduced or
adapted for fine-grained categorization. The main previous
scenario was to provide the user with a single estimate; exam-
ples include Du et al. (2005); Felzenszwalb and Schwartz
(2007); Wu et al. (2007); Larios et al. (2008); Wu and Rehg
(2008); Martinez-Mufioz et al. (2009); Branson et al. (2010);
Angelova and Zhu (2013). Other studies chose to report the
k most similar classes to improve accuracy. Usually, k ranges
from five to twenty (Belhumeur et al. (2008); Kumar et al.
(2012); Liu et al. (2012); Rejeb Sfar et al. (2013b)).

Several shape-based approaches, including boundary ana-
lyzes, have been used, especially for leaves (Ling and Jacobs
(2007); Felzenszwalb and Schwartz (2007); Belhumeur et al.
(2008); Caballero and Aranda (2010); Kumar et al. (2012);
Mouine et al. (2013)). Often, performance is sensitive to the
quality of the contour resulting from a segmentation process,
which naturally complicates distinguishing between cate-
gories with very similar shapes. Other methods adapt systems
for detecting instances of generic object classes (Lazebnik
et al. 2006; Wang et al. 2010) by encoding an image as a
bag of discrete visual codewords and basing classification
on histograms of codeword occurrences; examples include
Nilsback and Zisserman (2006), Larios et al. (2008). Again,
however, the distinctions among fine-grained categories are
sometimes too refined to be captured by variations in bags of
visual words.

To account for such distinctions, an increasing number of
studies make use of human input in the identification task. In
Wah et al. (2011), an interactive system is proposed wherein
users click on bird parts and answer questions about attributes
(e.g., “white belly”, “red-orange beak”, “sharp crown”). Far-
rell et al. (2011b) and Zhang et al. (2012) use annotated
data (e.g., key points and object parts) by experts to exploit
poselet classifiers (Bourdev and Malik 2009) and build fine-
grained models. In Rejeb Sfar et al. (2013b), we described
scanned leaves and orchid flowers using vantage points based
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on botanical knowledge, and dedicated features to permit dis-
ambiguation between similar species. In other recent work
(Deng et al. 2013), an online game Bubbles was introduced
to reveal discriminative features humans use for bird identi-
fication. Our work on leaves is somewhat similar in that we
study interactive scenarios using domain knowledge about
botanical landmarks. Our feature extraction follows Rejeb
Sfar et al. (2013b), but our classification framework is new.

Also, it should be emphasized here that most of previ-
ous work on leaves, including those mentioned above, use
leaf images with uniform backgrounds (e.g., scans or pho-
tographs on white backgrounds). Only few of them addressed
the problem of identifying leaves on cluttered backgrounds
which is more likely to be the real-world scenario. To tackle
this problem, a manual or an interactive segmentation process
was generally designed. Obviously, isolating green leaves
in an equally green environment seems like an other more
difficult issue. Teng et al. (2009) proposed to recover the
3D position of a leaf from different cluttered images with
close viewpoints. Then they performed a 2D/3D joint seg-
mentation using 3D distances and color similarity. In Wang
et al. (2008), an automatic marker-controlled watershed seg-
mentation method is combined with pre-segmentation and
morphological operation to segment leaf images with clut-
tered background based on the prior shape information. In the
case of weed leaves, deformable templates have been used
in Manh et al. (2001) to segment one single species Setaria
viridis, providing promising results. Casanova et al. achieved
the best results on natural leaf photo classification either at
ImageClef2011 or ImageClef2012 plant identification tasks
(Goéau et al. 2011, 2012). At both tasks, they proposed a
shape boundary analysis based on a prior leaf segmentation.
To this end, a manual segmentation was performed at the
first task (Casanova et al. 2011) while a semi-automatic seg-
mentation was performed at the second task (Casanova et al.
2012). In this work, we will show the efficiency of our algo-
rithm on unconstrained photographs of leaves without any
segmentation process.

Confidence intervals and sets in statistics. In classi-
cal (frequentist) statistics, a confidence interval CI (Neyman
1937) is a data-dependent interval estimate of a single popu-
lation parameter. For example, the CI provides an indication
of the precision of a point estimate such as maximum likeli-
hood. Precision corresponds to the length of the CI and the
confidence level can be interpreted as the fraction of times in
repeated experiments that this random interval would contain
the true parameter. A confidence set (CS) refers to an exten-
sion of confidence intervals to a multidimensional parame-
ter (Cook 2005). Bayesian CI’s and CS’s (Lee 1989) extend
these notions to Bayesian statistics wherein a prior distribu-
tion over parameters combined with a data model leads to a
posterior distribution over parameters given the observations,
interpreting the confidence level as a posterior probability.
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In analogy with these classical tools, we propose a semi-
automated system which outputs a CS, a variable-length list
of categories which contains the true one with high proba-
bility, rather than providing a point estimate (or ranking all
candidates).

Hierarchical search. Hierarchy is a powerful organizing
principle for both representation and search (Li and Perona
2005; Burl and Perona 1998; Fan and Geman 2004; Jr and
Freitas 2011). The idea is to decompose the original prob-
lem into more tractable sub-problems sharing more homo-
geneous properties. One monolithic classifier could be then
replaced by a hierarchy of classifiers which gather increas-
ingly detailed information about the object under investiga-
tion. Many real-world classification problems, are naturally
cast as hierarchical classification problems, where the classes
to be predicted are organized into a class hierarchy, typically a
tree or a Direct Acyclic Graph (DAG). Many of them utilize
semantic class hierarchy, including the sharing of training
examples across semantically similar categories (Fergus et
al. 2010) or combining information from different levels of
the semantic hierarchy (Zweig and Weinshall 2007). Deng et
al. (2010) consider exploiting the semantic hierarchy in the
context of more than 10, 000 categories.

In the fine-grained field, only few previous work take
advantage of the hierarchical structure for identification
tasks. To the best of our knowledge, only the natural seman-
tic hierarchy (based on taxonomic groups, e.g., family and
genus) were used; examples include those defined in Far-
rell et al. (2001a) or in Rejeb Sfar et al. (2013b). Using
such a hierarchy needs specialized domain knowledge about
species and taxonomy. Rather than using pre-defined taxo-
nomic groups, which are defined according to both shared
physical and genetic characteristics, we propose to consider
purely visual characteristics to automatically build the hier-
archy, using an agglomerative clustering on training data.

Class-selective rejection. Class-selective rejection (Ha
1997; Grall-Maés and Beauseroy 2009; Coz et al. 2009) is
an extension of basic simple rejection (Yuan and Wegkamp
2010; El-Yaniv and Wiener 2010) in the multi-class case.
That is, when an input pattern cannot be reliably assigned
to one of the pre-defined classes in a multi-class problem, it
is assigned to a subset of classes that are most likely to fit
the pattern, instead of simple rejection. Selecting the most
promising classes allows to reduce the error rate and to pro-
pose a reduced set to another classifier or an expert, which
is of great interest in many decision making systems. Exam-
ples of class-selective rejection rules include those defined
in Gupta 1965; Ha 1997; Horiuchi 1998. The simplest and
the most used rule is the fop-n ranking, in which n takes its
values between one and the total number of classes consid-
ered. Another popular one is the constant risk rule (Gupta
(1965)) which consists of selecting, for each pattern, the
minimum number of best classes so that the accumulated
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Table 1 Notation

I: an image

Y: complete set of categories

Y =Y (): true category of /

7T a binary tree with nodes r € 7

C;: categories of ) associated with ¢

X;: discriminant score for testing Y € C; vs. Y ¢ C;
X: set of scores {X;, 1 € T}

C(X) € {C,}: confidence set

p=PY € 6(X)): confidence level

posterior probability exceeds a pre-defined threshold. Ha
(1997) defined a new optimality criterion to be the best trade-
off between error rate and average number of classes. An
optimum class-selective rejection rule was then obtained by
solving a discrete convex minimization problem. Grall-Mags
and Beauseroy (2009) addressed the problem of multi-class
decision with class-selective rejection and performance con-
straints. The problem was defined using three kind of criteria:
the label sets, the performance constraints, and the average
expected loss. More recently, Deng et al. (2012) connected
class-selective rejection with hierarchical classification, to
restrict the subset of selected classes to internal nodes of a
predefined hierarchy. In our work, we also focus on provid-
ing the best subset of classes using a predefined hierarchy but
within a novel framework based on the notion of confidence
sets in statistics (Table 1).

3 Methodology

Let Y denote the complete set of (fine-grained) categories
and let Y (I) denote the true category of image /. Our task
is to predict Y. But rather than provide a single estimate we
will provide a confidence set C C Y which depends on [
and such that Y € C with high probability, say P(Y € C ) >
1 — €. Performance is then measured by the expected size
of C.

One straightforward way to generate a CS is model-based:
delineate a feature vector Z = Z(I) and model for the
joint distribution p(z,c¢) of Z and Y. Provided with this,
and given an image / (and hence z) the natural recipe for
assembling C (z) would be to compute the posterior distrib-
ution p(c|z) over categories and aggregate the masses start-
ing from the largest one, say p(cilz) > p(c2lz) = ---,
until the cumulative probability passes 1 — €. That is, C =
{c1, ..., ck} where p(ci|z) + -+ + p(ck—1lz) < 1 — € and
p(cilz) + --- + pleklz) = 1 — €. In principle, the CS
can then be any subset of categories. We propose a dif-
ferent strategy which is anchored by a hierarchical repre-

sentation of ) and which drastically reduces the space of
candidate CS’s.

3.1 Hierarchical Strategy

Suppose we are provided with a recursive partitioning of
Y indexed by the nodes of a binary tree 7. The hierarchy
will serve as a platform for defining features and for select-
ing confidence sets. (The construction for our application to
identifying plant species is based on hierarchical clustering of
training data and is described in Sect. 4.3.) More specifically,
eachnodet € 7 isidentified with a non-empty subset of cat-
egories C; C ). The root node contains all categories and the
terminal nodes contain a single category. At each level of 7,
the subsets partition ) and the partitioning is recursive in the
sense that for every non-terminal node ¢, C; = Cy) U Cy(p),
where [(¢) and r(¢) are the left and right children of node ¢.
A hierarchy for leaves is shown in Fig. 7.

When visual similarity is the clustering principle which
generates the hierarchy, this structure can provide a natural
family of (visually) closely-related categories with diverse
sizes. This argues for restricting C to the subsets {Ci,t €T}
In the standard case of returning a single estimate, the selec-
tion is restricted to the terminal nodes which are individual
species.

The hierarchy also serves another key role. The data
for selecting C is a discriminant function on T, denoted
X;,t € T;here X; € Rrepresents a “score” for distinguish-
ing between the two hypotheses Y € C; versus Y ¢ C;. The
scores are functions of node-specific feature vectors and are
learned from training data using a some machine learning
methodology. In our application, we use SVMs trained on
features which are of course dedicated to leaves (see Sects.
4.2 and 4.4), but the framework is classifier-independent
in that any learning algorithm could be chosen to induce
a local discriminant function from the training data; those
data points associated with node ¢ serve as positive exam-
ples and all others as negative examples. Since the choice
of C depends only on the scores X = {X;,t € 7}, we
will sometimes write C (X) to emphasize the dependence on
the data.

3.2 Statistical Model

In this framework, the modeling is naturally done at the level
of X and Y, thereby integrating all the evidence from the
node scores. Let p(x, ¢) be a model for the joint distribution
P(X =x,Y = ¢). In order to specify p(x, ¢) we fix a prior
p(c) over categories (usually uniform); hence the key ingre-
dient is the conditional data distribution p(x|c), ¢ € ). (Note
that the score at the root is meaningless since all categories
belong to C,o; and consequently this node can be ignored
in what follows.) The components of x are real-valued and
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(t7,c1) (ts,c2) (to,c3) (tio,ca)
Fig. 5 Example of 7 illustrating the key objects for 8 categories
(c1, ..., cg). T contains 14 nodes (not counting the root #,,.), labeled
(1, ..., 14). Associated with each node 7 is a set of categories C;, e.g.,
Blade

Base / Base Apex
Apex
y

!

Petiole

Leaflets

Fig. 6 The different leaf parts, including the leaf base and the leaf apex
for both a simple (on the left) and a compound (on the right) leaf

indexed by the tree 7 ; hence the dimension of X is basically
twice the number of categories. The model we use for p(x|c)
in our application is a Bayesian network (BN) over Gaussian
variables and will be described in detail in Sect. 4.5. In brief,
the two children #; and #, of t,,,; serve as roots of the BN,
which then has the form:

pxle) = f(xile) f(x2lc) H Je(xelxi—, ¢) (D
teT\{11,02}

Here r— denotes the parent of #; f(x1|c) and f(x2|c) are
the marginal densities of scores X;,, X;, given Y = ¢, both
assumed univariate normal; and f; (x;|x;—, ¢) is the condi-
tional density of X, given {X;_ = x;—, Y = c}. Since we are
assuming (X;, X,_) is bivariate Gaussian given Y = c, the
form of the conditional density follows immediately. Again,
the details for our application to plants, including parameter
estimation, appear later in Sect. 4.5.

3.3 Constructing the Confidence Set

The first step in CS selection is to compute the posterior
probabilities P(Y € C,;|X = x) for each t+ € 7. This is
straightforward given our model:

PYeCX=x)=> P =cX=x )
ceCy
ZCEC p(X|c)
=== 3
S oy PXIO) ©)
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(t12,¢6) (tiz,c7) (t14,cs)

C;, = {c1, 2, 3, c4}. Here, the true category is ¥ = c3, B(x) =
{t1, tA}, (red circles) which are on the true path (in red). So, T (x) = t4
and C(x) = {c3, c4} (Color figure online)

Now define
Bx)={teT7 :PY eC/|X=x)>1—¢}.

Obviously we can assume € < 0.5;in practice, we take values
such as 0.05 and 0.01. It is then easy to see that for every x,
the set of nodes B(x) is a non-empty path in 7 originating at
one of the two roots f1, #; and generally terminating before a
terminal node is reached. The natural definition of C is then
the smallest set C; in the tree which satisfies the constraint.
Specifically,

C(x) = Crx). T(x) =arg min |C].
teB(x)

Equivalently, 7 (x) is the deepest node in B(x). The corre-
sponding confidence level for the given data is then

p(x) = P(Y € C®)|X =x)
and the average confidence level is
Ep(X) = P(Y € C(X)).

Given the definition of B(x), it follows that Ep(X) > 1 —e.

Figure 5 illustrates the concepts above for a simplified
hierarchical structure 7 of 8 categories (cy, ..., cg). Here
T (x) = 14 is the deepest node in B(x) = {f1, t4}, and the
resulting confidence set is the C = {c3, ca}.

The efficiency of this algorithm will be demonstrated in a
variety of experiments in Sect. 5.2, both in terms of compar-
ing with other methods as well as generating high confidence
sets.

3.4 Relationship to Non-Bayesian Confidence Sets

In classical (frequentist) statistics, there is no r.v. Y, only
a family of probability distributions {p(x|c)} indexed by
a parameter ¢ € Y. A 100(1 — €)% confidence set for
the true parameter c” is a random set (i.e., data-dependent)
which contains ¢ with probability 1 — €. For a continu-
ous real-valued parameter, an interval is often centered at a
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Fig. 7 A dendogram representing a hierarchical clustering of 50 species of Smithsonian leaves. Displayed are the nested groupings of species,
similarity levels at which groupings change, and a thumbnail from each species. Many clusters match morphological classes

point estimate ¢ such as the maximum likelihood estimator
CmL = argsup, p(x|c).

Following this recipe we would begin with the maximum
likelihood estimator ¢psz, which coincides with the MAP
estimator argmax, P(Y = ¢|X = x) in the Bayesian case
when the prior is uniform. The tree provides a neighborhood
structure: a natural way to “center” the CS at ¢y, is to con-
sider the subsets of categories along the path from ¢y, to the
root. However, given such a set C (x) of categories containing
¢y (X), computing P e Cc (X)) would require knowing
the distribution of the ML estimator under ¢°, which appears
difficult. The Bayesian argument gives this in an average
sense. (Note, however, that the CS constructed in the previ-
ous section does not necessarily contain the MAP estimator,
but nearly always does in practice.)

4 Application to Plant Species
4.1 Leaf Representation

In botany, a leaf is defined as a colored, usually green, expan-
sion growing from the side of a stem, in which the sap for
the use of the plant is elaborated under the influence of light.
It is one of the parts of a plant which collectively constitute
its foliage. Usually, a leaf consists of a blade (i.e., the flat
part of a leaf) supported upon a petiole (i.e., the small stalk
situated at the lower part of the leaf that joins the blade to
the stem), which, continued through the blade as the midrib,
gives off woody ribs and veins that support the cellular
texture.

A leaf is qualified as being “simple” if its blade is undi-
vided; otherwise it is “compound” (i.e., divided into two or

Fig. 8 Two local coordinate systems are used for vantage feature
frames, one centered on the leaf apex (red one) and one on the leaf
base (blue one) (Color figure online)

more leaflets); see Fig. 6. According to the leaf architecture
manual of Ellis (2009), the internal shape of the blade is
characterized by the presence of vascular tissue called veins,
while the global shape can be divided into three main parts:
(1) The basal part, usually the lower 25 % of the blade; the
base, which is the point that joins the blade to the peti-
ole, is situated at its center. (2) The apical part, usually
the upper 25 % of the blade and centered by a sharp point
called the apex. (3) The margin, which is the edge of the
blade.

This botanical leaf decomposition gives an interesting
alternative for efficient local representation of the leaf and
is often used by botanists in the identification tasks. In the
manual process, experts generally use the different foliar
characters as identification keys which are examined sequen-
tially and adaptively (Elpel 2004) to identify the plant
species. In essence, one is posing and answering a series
of questions about one or more attributes (e.g, shape, color,
distinguished landmarks, internal structure) with the aim
of narrowing down the set of possible species. Specific
leaf parts are often examined by botanists for identifica-
tion purposes. In computational vision, such a fine-grained
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Fig. 9 Histograms of correlation coefficients between a hierarchical node ¢ and its parent — given a fixed species

Automatic
initialization

F

Input image

Mode of operation 1

Manual
initialization

Mode of operation 2

- ] - -

Classification

Manual final
disambiguation

- llex aquifolium X

- Quercus ilex V4

llex Quercus
aquifolium ilex

Classification

Manual final
disambiguation

- llex aquifolium X

llex Quercus
aquifolium ilex

- Quercus ilex v

Fig. 10 Given an input leaf image, two modes of operation are proposed. The first mode (top row) is semi-automated identification with human
intervention only at the end of the process. The second mode (bottom row) involves the user at both the beginning, for initialization, and the end,

for final disambiguation

recognition conveniently enables part-based approaches,
because the differences between subcategories are very fine
and not noticeable from global, image-level features, and
objects within the same basic-level category often have the
“same” parts (Tversky and Hemenway 1984), allowing for
easier comparison. Note that in basic-level categorization,
this approach is more difficult, as there is no natural corre-
sponding parts among instances of, for example, dogs, cars,
and plants.
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4.2 Feature Frames

In Rejeb Sfar et al. (2013b), we demonstrated that the leaf
apex and the leaf base are very useful to automatically sepa-
rate one species from another. In fact, such landmarks could
be considered more like vantage points in that orientation
plays a role as well. Naturally, species tend to have certain
signature appearance properties and consequently what to
look for in the neighborhood of these landmarks may be
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Fig. 11 A test leaf image is
first segmented. Then the petiole
is removed in order to compute
the centroid (green point) as
well as the approximate
bounding circle of the leaf blade
(red dashed circle). The base
(blue point) and the apex (red
point) are estimated using
learned classifiers (f1, f2). The
proposed locations for both
landmarks are restricted to the
boundary points. The
neighborhood of the first
landmark detected is excluded
from the list of candidate points
for the next detection (blue
dashed circle) (Color figure
online)

species-dependent. Put differently, the conditional distrib-
ution over any large family of generic local features may
depend strongly on the species or groups of species. This
aspect of the identification process was encoded in Rejeb
Sfar et al. (2013b) by allowing the set of features associated
with each landmark to depend on the species using the notion
of vantage feature frames. Such frames also ensure that the
local appearance properties are largely invariant to the ori-
entation and scale of the object. As will be seen in Sect. 4.3,
these frames are defined and used here within the context of
a hierarchical representation of the data.

4.3 Hierarchy Construction

Hierarchical representation can open the door to exploring
classification algorithms or cost metrics that do not penal-
ize as much misclassification among very similar classes.
For example, it may not be as problematic which fir tree it
is as long as we do not confuse it with other non-related
trees. Botanical species are naturally organized in a hier-
archical taxonomy (family-genus-species). However, rather
than using pre-defined taxonomic groups, which are defined
according to both shared physical and genetic characteris-
tics, we consider purely visual characteristics to automati-
cally build the hierarchy using a hierarchical clustering on
training data.

Hierarchical clustering is widely used; a useful review of
the standard methods has been given in Jain et al. (1999).
In particular, agglomerative procedures produce a series of
partitions of the data; the first partition consists of single-
member ’clusters’; the last consists of a single group con-
taining all individuals. The variation here is based on domain
knowledge about botanical species and landmarks, but the

Fig. 12 Examples of leaf photographs manually marked. For each
image, displayed are the leaf base (blue point), the leaf apex (red
point) and a third boundary point (yellow point). The approximate width
(marked as s at each image) of the leaf is defined as the distance between
the yellow point and the apex-base line (Color figure online)

principle is quite general: a tree-structured hierarchy is recur-
sively constructed bottom-up by successively merging simi-
lar groups. We treat each species as a singleton cluster at the
outset and then successively merge (or agglomerate) pairs of
clusters until all the clusters have been merged into a single
cluster that contains all species. We use Ward’s criterion (see
Ward 1963) and the Euclidean norm. That is, at each step we
define the dissimilarity between two clusters

Ny % Ny

dissim(r,s) = x 1 X, — X,

ny + ng
where r and s denote two specific clusters with sizes n, and
ng, X, and X, denote the centers of gravity of the clusters
and ||.|| is the Euclidean norm.

Local features are used to compute the centers of gravity
of the clusters. More specifically, texture and shape-based
features were used to characterize each leaf image and were
defined in two local coordinate systems, one centered on
the leaf base and the other on the leaf apex. The motivation
behind using such local coordinate systems is to focus atten-
tion around each landmark, which is the strategy reported by
botanists as explained in Sect. 4.1.
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The tree-structured hierarchy provides a useful summary
of the data, i.e., an overview of the visual similarities and
relationships between species based on both the basal and
the apical parts. Figure 7 depicts a dendrogram (Ferndndez
and Gémez 2008) that illustrates the nested grouping of the
species produced by a hierarchical clustering on 50 botanical
species. Note that many clusters obtained could be matched
with morphological classes defined by botanists themselves.
In particular, two large, natural clusters are formed at the
first level of the hierarchy; one cluster consists of compound
and lobed leaves (on the left) and another cluster of sim-
ple leaves (on the right). Species with lobed leaves (with 3
lobes) merge with those with trifoliate leaves (with 3 leaflets)
while species with compound leaves containing more leaflets
are grouped together. Also, toothed leaves are separated from
non-toothed leaves. Such a hierarchical clustering could even
help botanists to speed up the classification process of large
amounts of newly collected leaves by suggesting coarse mor-
phological categories.

4.4 Discriminant Function

The hierarchical representation of species will serve as a plat-
form for the classification algorithm. To this end, we learn
local discriminant functions at each node r € 7. As pre-
viously mentioned (see Sect. 3.1), the framework is largely
classifier-independent in that any learning algorithm could
be chosen to induce such local functions from the training
data. We have chosen to train an SVM classifier for Y € C;
versus Y ¢ C; using vantage feature frames, with different
positive and negative images at each node. The “score” X,
refers here to the SVM score.

Given a tree 7, a vantage feature frame F has two compo-
nents. One, ®, is geometric and the other, Z, is appearance-
based. The geometric component ® is category-independent
and simply a local coordinate system centered at a specific
landmark. The appearance component is a family of pose-
indexed features, one element of the family for each category:
Z ={Z,..., 2N}, where Z; is the set of local features to
compute in frame F for C; and N the total number of hier-
archical nodes. Obviously, to be useful the frame must be
reliably detected and the features must be discriminating. In
Rejeb Sfar et al. (2013b) algorithms are given for learning
discriminating ones, detecting them online and pooling the
features computed in these frames for identification purposes.

We refer to the origins of the frames as vantage points
- special locations from which observing the leaf and in a
particular direction can provide discriminating information
about the species. Following the work in Rejeb Sfar et al.
(2013b), we consider two vantage points for leaves: the leaf
base and the leaf apex as shown in Fig. 8. Also, Hough,
EOH, HSV and Fourier histograms are used as base fea-
tures (more details of these global features can be found in
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Ferecatu (2005)) to construct the frames. Hence, given the
pre-defined hierarchy 7, we select specific subset of features
Z, for each subset of species C; and only these are used to
train local classifiers. The reason for dedicated features is
that there is so much variability in the presentation of leaves
in the neighborhood of landmarks that some features are far
more discriminating than others, and the discriminating ones
can depend as well on the vantage point. For example, the
discriminating features around the leaf base for estimating
a particular group of species might be different from those
around the apex for estimating another group.

4.5 Probabilistic Model

As explained in Sect. 3.3, in order to compute P(Y € C;|X =
x) we require the joint conditional density p(x|c) of the
scores X = (x;,¢t € 7). (We assume the prior distribution
p(c) is uniform over species ¢ € ).) We use a Gaussian
Bayesian network. The choice of a Gaussian model for indi-
vidual SVM scores X, is primarily motivated by simplicity;
we have sufficient data to reliably estimate the mean and the
variance and this approximation, although rough, works well
in practice.

As for the dependency structure among the scores,
whereas there are significant (conditional) correlations among
many pairs of variables X;, X given the species Y, clearly
we must control the complexity of the joint distribution since
we do not have sufficient data to reliably estimate all the order
|T|? parameters involved in a full multivariate Gaussian para-
meterization. The motivation for the Bayesian network is that
the largest of the (absolute) correlations tend to be between
parents and children; see Fig. 9. More details are shown in
Figure S10. The underlying DAG (directed acyclic graph)
is of course the tree 7 with arrows from parents to children.
With this Gaussian Bayesian network we must estimate three
parameters (mean, variance, correlation with parent) for each
non-root node and two parameters (mean and variance) for
nodes 71 and t,. To this end, part of the training data is set
aside for parameter estimation in each experiment.

Consequently, the densities f(x{|c) and f(xz|c) in Eq.
(1) are univariate normal. The densities

fi(x¢|x;—, c) are obtained by recalling that if Uj, U,
are jointly normal with means and standard deviations
1, U2, 01, 02 and correlation coefficient p, then f(uy|uz)
is normal with mean wu; + p%(xz — u2) and variance

(1 — p*)o}. Hence

1
el €) = ———
S (el xq of ) )
(X — p§ — pf 2 (x— — puf_))?
X exp } — =

2(1 - pfHyof?
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Fig. 13 Samples from the
Swedish dataset. One image
from each species is shown

Fig. 14 Samples from the
Flavia dataset. One image from
each species is shown

where the superscripts indicate the dependence on the species
c. Computing p(x|c) and thus P(Y € C;|X = x) is then
straightforward.

4.6 Scenarios for Species Identification

Different levels of interactive identification can be consid-
ered depending on whether the background is uniform and
or natural (cluttered). The particular scenarios we consider
are illustrated in Fig. 10.

4.6.1 Final Disambiguation

Given a leaf image, vantage feature frames are first automat-
ically detected. Detecting the vantage feature frames refers
to first estimating vantage points (landmarks) and then the
orientation and scale of each frame. The orientation is deter-
mined by the centroid, which is directly computed from the
raw image data after a segmentation process using the Otsu
(1979) algorithm. The scale is taken to be the radius of the
bounding circle as illustrated for leaves in Fig. 11.

The landmarks are detected using SVM classifiers. Since
we are only using landmarks on the object boundaries (as
determined by the segmentation process), we restrict the
search to a sample of boundary points to minimize the compu-
tation. In addition, after detecting each landmark, we exclude
the boundary points in its neighborhood from the list of candi-
dates; see Fig. 11. More details about the detection of vantage
feature frames can be found in Rejeb Sfar et al. (2013b).

Once the frames are detected, category-dependent features
are extracted as described in Sect. 4.4. Then, given the scores

x for the leaf image being processed, the Bayesian network
model and fixing €, we compute the sub-path B(x) of 7 and
finally provide C(x) to the user. The type of user interven-
tion will then depend on the needs and skills of the user. The
novice user may simply accept C as it stands or use reference
material to narrow it down. A more skilled user may be able
to identify it if it resides in the set or recognize that it does
not. Of course, the smaller the confidence set, the more infor-
mative and useful it is. Several experiments in Sect. 5.2 will
demonstrate the efficiency of such a scenario on leaf images
with uniform background (e.g. scanned leaves).

4.6.2 Initialization

For a single leaf image with a cluttered background (Fig. 3a),
automatic detection of vantage points requires a very efficient
segmentation algorithm (robust to background noise and tex-
ture), which is not the case for the algorithm we use (Otsu) or
any we are aware of. Also, it could be exceedingly difficult to
automatically (and accurately) extract a single leaf boundary
from a branch or foliage image; see Fig. 3b, c¢ (additional
examples can be found in Figure S9). Moreover, returning a
P%CS is of little value in applications if either |C S| is very
large or P < 100. The minimal intervention we can imag-
ine is asking the user to mark several landmarks; providing
a faithful segmentation is another possibility but we are able
to obtain good results without this level of intervention.

We ask the user to mark the two terminals of the main
vein of the leaf, the base and the apex, as well as a third
boundary point which will be used to approximate the width
of the leaf (see Fig. 12). The centroid of the leaf is defined

@ Springer



Int J Comput Vis

Fig. 15 Samples from the
Smithsonian dataset. One image
from each species is shown
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as the mid-point of the apex-base line. Local features are
then extracted in two coordinate systems, one centered on
the base and the other on the apex as described in Sect 4.4.
The same classification process as in the previous scenario
Sect. 4.6.1 is used to provide the user with a CS. A summary
of the scenarios is provided in 10.

5 Experiments
5.1 Datasets

We considered four challenging leaf datasets from different
geographical areas. Three of them consist of images of sin-
gle leaves on a white background. The last one consists of
unconstrained photographs of leaves.

Swedish: This has 1125 scanned leaf images containing
75 images from each of 15 different Swedish plant species.
This dataset was the first publicly available leaf data, intro-
duced by Soderkvist (2001) for research. Although it contains
relatively few varieties of species, we chose it in order to be
able to compare our work with various approaches, including
generic shape classification approaches such as Felzenszwalb
and Schwartz (2007); Ling and Jacobs (2007); Wu and Rehg
(2008) which were applied on leaves (Fig. 13)

Flavia: The Flavia dataset is composed of 1907 scans of
leaves. It consists of 32 species with 50-60 observations in
each species; see Fig. 14. It was introduced by Wu et al.
(2007) and was used to evaluate retrieval systems but also
some leaf classification algorithms (Wang et al. 2005; Du et
al. 2005; Gu et al. 2005).

Smithsonian: This dataset has 5466 leaf images contain-
ing 148 different species from the Northeastern U.S area. The
number of exemplars per species varies from 2 to 63. These
images were provided by the Smithsonian botanical insti-
tution within the framework of the US National Herbarium.
One particularity of these data is that the images present only
simple leaves with various poses and orientations of leaves as
well as different structures of basal and apical parts as shown
in Fig. 15.
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ImageCLEF2011: Used in the ImageCLEF2011 plant
identification task?, the complete leaf collection contains
three categories of images: scans of leaves acquired using
a flat-bed scanner, scan-like leaf images acquired using a
digital camera and free natural photos. Here, we focus only
on photos; see Fig. 16. This category has 1469 unconstrained
photographs of leaves; 930 images for training and 539 test
images. It was constructed through a citizen sciences initia-
tive conducted by Telabotanica®, a French social network of
amateur and expert botanists (more details can be found in
Goéau et al. (2011)). As aresult, the task it represents is quite
close to the conditions encountered in a real-world applica-
tion. Each image can represent either a single leaf, a branch
or a foliage as shown in Fig. 3. In particular, the training
leaves were collected from 269 plants and those of the test
set from 99 other different plants. Not all the species were
considered for testing. Only samples from 26 species were
available for testing using 40 training species.

5.2 Results and Analysis

For ease of notation, we label three scenarios:

— CSO0: The confidence set CS is generated by ranking the
posterior probabilities and accumulating species until the
total mass exceeds 1 — ¢; see Sect. 3.

— CS1: The process is automatically initialized and the Cc
used is described in Sect. 3.3. Note that the size of C is
necessarily at least as large as the CS returned by CS0.

— CS82: The process is manually initialized and the C used
is described in Sect. 3.3.

We will also refer to two baseline cases where the confi-
dence set is restricted to a singleton.

2 http://www.imageclef.org/2011/Plants

3 http://www.tela-botanica.org
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Fig. 16 Samples from the
ImageCLEF2011 leaf photos.
One image from each species is
shown

— MAP: Only the species with the highest posterior mass
is returned.

— F-SVM: Only the species with the highest SVM score is
returned, i.e., a “flat classifier”” using one-vs-all SVM’s.

To evaluate the performance of the proposed framework,
we first provide the rate on the holdout test data at which the
true species appears among the list of estimates, and second
analyze the size of the response.

In order to be able to compare our performance with that
of other methods, we will also adopt other evaluation met-
rics: (1) the accuracy rate among the top k estimates for the
Swedish, Flavia, and Smithsonian datasets, (2) the evalua-
tion metric* used for the ImageCLEF2011 plant identifica-
tion task, for the ImageCLEF photo subset, which allows us
to compare our performance with that of all the task par-
ticipants. Such a metric refers to a normalized classification
rate evaluated on the first species returned for each test image
while taking into account the individual plant and the author
(more details about the metric definition and the participants
can be found in Goéau et al. (2011)). In all the following
experiments , we use € = (0.01.

Swedish Data: Following all previous work on this
dataset, we randomly select 25 training images from each
species and test the remaining images in order to evaluate our
performance. One third of the training set was used to esti-
mate the Bayesian network parameters. We use this dataset
to evaluate CS1.

As shown in Table 2, the correct species belongs to the CS
returned 99.5% of the time while applying the CS1 scenario
and 99.2% while applying CSO. Figure 17 illustrates the dis-
tribution of the size of the CS in both cases. The average size
is less than 1.5; see Table 2. Both CS1 and CSO do achieve

4 http://www.imageclef.org/2011/Plants

Table 2 Comparison between CS0O and CS1 on the Swedish dataset

Scenario Accuracy (%) Average size of the response
CSO 99.2 1.2
CS1 99.5 1.3
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Fig. 17 The distribution of |6 |, the size of the CS returned, for both
methods of constructing the CS when testing on the Swedish leaves

near-perfect results while returning a single estimate at most
of the time.

By construction, both strategies are equivalent when only
one estimate is returned. Note that one advantage of the pro-
posed approach compared with CSO is that CS1 provides
visually coherent sets for the user; see Fig. 18. An additional
advantage will be demonstrated on the Smithsonian and the
ImageClef data.

In order to be able to compare CS1 with previous work
using the same evaluation framework, we use the two base-
line strategies for providing a single estimate. As seen in
Table 3, we achieve the best performance (98.7% accuracy)
while considering the species in C with the highest posterior
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Fig. 18 A sample of test leaf images (scans and photos) with non-singleton confidence sets (CS) of species. For each CS, a training image from
each species is displayed. For each test image, the red species is the true one. The CS are generally visually coherent
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Table 3 Different results on the Swedish data while considering a sin-
gle estimate (top-1)

Methods Accuracy (%)
CS1 - MAP 98.7
IdKeys [(Rejeb Sfar et al. (2013a)) 98.4
sPACT (Wu and Rehg (2008)) 97.9
TSLA (Mouine et al. (2013)) 96.5
Shape-Tree (Felzenszwalb and Schwartz (2007)) 96.3
SPTC+DP (Ling and Jacobs (2007)) 95.3
IDSC+DP (Ling and Jacobs (2007)) 94.1
F-SVM 93.3
SC+DP (Ling and Jacobs (2007)) 88.1
Soderkvist (Soderkvist (2001)) 82.4

The number in bold indicates the best performance

Table 4 Comparison between CS0O and CS1 on the Flavia dataset

Scenario Accuracy (%) Average size of the response
CSO 97.1 1.6
CS1 98.1 2.2

mass. However, the one-vs-all SVM classifier yields only
93.3% accuracy; see Table 3. Using a hierarchical model is
clearly of value for this dataset.

Flavia Data: Following Wu et al. (2007), we used 10
leaves from each of 32 species to evaluate the performance
of our approach, so that a total of 320 leaves are used for
testing the algorithms and the remaining leaves for training
and estimating the Gaussian Bayesian network. As with the
Swedish leaves, we achieve near-perfect results: using CS1,
the average size of the CS is 2.2 for an accuracy rate of 98.1%
as shown in Table 4. Figure 19 shows the distribution of c
while applying both CS0 and CS1. We have |5| = 187.5%
of the time. From Table 4, we see that CS1 is slightly more
accurate than CS0, but at the expense of providing a slightly
larger CS on average.

Finally, we use the same evaluation framework as in Wu
et al. (2007) to enable a direct comparison with some previ-
ous methods. We consider only a single estimate. As shown
in Table 5, we outperform other methods, including the the
SVM-based flat classifier, by returning the species in C with
the highest posterior mass.

Smithsonian Data: As in Rejeb Sfar et al. (2013b), we
also use two-thirds of the images for training (one third for
learning discriminant functions and one third for estimating
Gaussian parameters) and the remaining images for testing.
With CS1, we achieve 92.4% accuracy while returning about
4 estimates on average; the accuracy with CSO is 91.8%. As
shown in Fig. 20, we do return a single estimate about 94%
of the time. In order to compare CS1 with Rejeb Sfar et
al. (2013b) on such a dataset, we rank the list of species
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200
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100

Number of tested images

50

1 2 3 4 9 10 26 32
Response list size

Fig. 19 The distribution of |6 |, the size of the CS returned, while

testing on the Flavia leaves

Table 5 Different results on the Flavia data while considering a single
estimate (top-1)

Methods Accuracy (%)
CS1 - MAP 97
F-SVM 94
RBFNN (Du et al. (2005)) 94
MLNN (Du et al. (2005)) 94
1-NN (Gu et al. (2005)) 93
MMC (Wang et al. (2005)) 92
BPNN (Wang et al. (2005)) 92
RBPNN (Gu et al. (2005)) 91
PNN (Wu et al. (2007)) 90

The number in bold indicates the best performance

in C for each test image, using their posterior masses. In
this case, we also achieve about 90% accuracy for the top
response compared with 79% for Rejeb Sfar et al. (2013b),
where achieving 90% accuracy required using the top four
responses.

Whereas using both strategies, the CS is estimated by the
model to capture the true species with very high probabil-
ity, this of course does not necessarily occur in practice due
to errors in estimating the true posterior distribution. This is
why CS1 out-performs CS0 in accuracy even though, in prin-
ciple, CSO should be better. To illustrate this, Fig. 21 shows
the distribution of the posterior masses of the true species on
the Smithsonian leaves. Note the high value (at least 0.9) for
the majority of the tested images; in this special case, CSO is
equivalent to CS1 as both achieve perfect results. However,
CS1 is more efficient when the true species has low mass
under the model; the CS1 strategy can recover from such a
catastrophic error in estimation due to the way the CS is con-
structed as long as there are species with non-trivial posterior
masses which are visually similar to the true one. In Fig. 21,
4.2% of the images for which the posterior probability of the
true species is less than 0.1 were missed by CSO but not by
CS1, but never vice-versa.
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Fig. 21 The histogram (in blue) of the posterior masses on the true
species for the leaves in the Smithsonian dataset. The two tables com-
pare the performance of CS1 and CSO at the two extremes, i.e., when
the posterior mass on the true species is very low and very high. In

ImageCLEF Data: Finally, we apply our approach in a
real-world context using unconstrained photographs. For this
subset, we focus on CS2, using human input to mark some
landmarks at the beginning of the process as explained in
Sect. 4.6.2. First, we compare our method with the entries
to the ImageCLEF2011 plant identification task on the photo
category using the MAP baseline. In this task, each entry was
assigned a normalized classification score s° as explained in
Sect. 5.1. Figure 22 shows the scores of all the submitted runs
of the eight participants; details about the participants can be

5 http://www.imageclef.org/2011/Plants
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the former case (drastic estimation error), the CS1 strategy is able to
recover (generate a CS with the true species) but CS0O does not for 4.2%
of the images, but there are no images for which the opposite occurs,
i.e., CSO succeeds but CS1 does not (Color figure online)

found in Goéau et al. (2011). We achieve the best score: s =
0.525. More specifically, two groups can be formed among
the participants, the methods which use segmentation process
(in red) and those which do not use segmentation (in blue).
One can notice a relatively big gap between these two groups
in terms of performance, i.e., there is a difference of about
40.3 between the best scores of the two groups; see Fig. 22.
We outperform all the previous work on such data, includ-
ing segmentation-based methods. Note that the best score
(s=0.523 for “IFSC UPS run2”) among the participants was
obtained using a manual segmentation which is not feasible
in real-world application.
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Fig. 22 Classification scores
on the leaf photos of the
ImageCLEF2011 dataset. In red
are the scores of the methods
which use segmentation and in
blue are the scores of those
which do not use segmentation
(Color figure online)
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Fig. 23 The distribution of |C|,
the size of the CS returned,
while testing on Image
CLEF2011 leaf photos. The
blue histogram is CS2 and the
red is CS0, both with manual
landmark identification (Color
figure online)
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Figure 23 illustrates the distribution of |C] while apply-
ing CS2 to the ImageCLEF2011 photos. About 50% of the
time we have |6 | < 10. However, we only achieve 58.4%
accuracy due to the difficulty of this task compared with
identifying leaves on a uniform background; evidently, the
posterior probabilities are poorly estimated. Figure 24 shows
the distribution of the posterior masses of the true species on
the ImageClef2011 photos. In contrast with Fig. 21, note the
low value (less than 0.1) of this mass for the majority of the
tested images, which accounts for the even lower accuracy
of CSO strategy, namely 38.4%. The superior performance
of CS2 occurs because for 32.5% of the images for which
the posterior mass on the true species is less than 0.1, the CS
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generated by CSO does not contain the true species but the
one generated by CS2 does.

Moreover, additional issues are revealed from a more
detailed analysis and which would explain the relatively low
accuracy rate (comparing to other data). Figure 26 illustrates
the different accuracies obtained per species. We completely
fail to recognize those which have only few training samples
(between zero and six); see the red boxes in Fig. 26. Note that
four tested species do not appear among the training species
and these represent about 12% of the test images. Also, using
different image types (i.e., leaf, branch and foliage pho-
tos) has made the task more challenging, especially since
the number of samples per image type is not balanced. For
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Fig. 24 The histogram (in blue) of the posterior masses on the true
species for the ImageClef2011 photos. The two tables compare the per-
formance of CS2 and CSO at the two extremes, i.e., when the posterior

CSO | CS2 | Rate
]
gz | x |o%
: x | v [o%
i
: /| | 100%
X X | 0%
CSO | CS2 | Rate
= — — —— — e — —
/ x 0% (01,02 02,09 [03,04] (04,08 (05,08 josor foros (o809
x / 32 5% Posterlor probablity of the true species
v v |19.2%
Y : the true species belongs to the CS returned
X X | 48.3% X :the true species doesn’t belong to the CS returned

mass on the true species is very low and very high. Among the low ones,
the the CS2 strategy succeeds and the CSO strategy does not in 32.5%
of the cases, but never the opposite (Color figure online)

Fig. 25 Random sample of incorrectly identified imageCLEF011 leaf photos

example, one has only very few foliage images to predict a
picked leaf image from the same species. However, we man-
age to recognize species from different image types with
approximatively “equivalent” performances, especially for
branch and foliage photos as shown in Table 6.

More generally, the quality of the photographs affects the
performance. Of course, a well-photographed leaf would be

@ Springer

easier to identify and also well-photographed training sam-
ples would lead to a better learning algorithm. For example,
a close-up photo where the leaf covers a large part of the
picture, is sharp whereas the background is optically blurred
due to a short deep-of-field, would provide more useful visual
content than a picture which is globally blurred or in which
the leaf is out of focus, too damaged (e.g., dry leaves), too
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Fig. 26 lllustration of the performance per species on the ImageCLEF photo subset. Each bin is labeled by two numbers separated by a slash. The
first one refers to the number of training samples in the species considered and the second one refers to the number of testing samples

Table 6 Performance of CS2 on different image types of Image-
CLEF2011 photos

Image type Accuracy (%)
Leaf 53.4
Branch 60.3
Foliage 61.5

small or/and the background is predominant with a sharp
visual content like grass or foliage of other plants, etc. Fig-
ure 25 illustrates some cases of failure.

6 Multiple Leaf Images

In a botanical field scenario where the basic unit of obser-
vation is a plant, botanists can examine different samples of
leaves from the same plant in order to determine the species.
In fact, one sample alone might not capture sufficient infor-
mation for accurate identification.

Using multiple-image queries rather than a single leaf
image can then improve the identification accuracy by tak-
ing advantage of the added information. We applied the same
algorithm used in Rejeb Sfar et al. (2013a) to collate the indi-
vidual results into a single set of estimates for an unknown

plant. Experiments on the ImageCLEF subset demonstrate
the efficiency of the proposed scenarios using multiple leaf
images of an unknown plant. Note that we use here only the
imageCLEF data since they are the only leaf images for which
we know the plant identity thanks to the additional annota-
tion provided with this dataset; see Sect. 5.1. We improved
to 74.5% accuracy (a gain of 16.1%) and the normalized
ImageCLEF2011 score reaches s = 0.626 (a gain of about
0.01).

7 Conclusion

We have introduced a new approach to fine-grained catego-
rization. In analogy with confidence sets in classical statistics,
we output a set of categories rather than a single estimate.
Our approach is model-based and Bayesian. The expected
size of the confidence set plays the role of the width of the
confidence interval in standard statistics and the posterior
probability that the true category belongs to the confidence
set plays the role of the confidence level.

We have applied this approach to identifying species of
plants from images of leaves, considering images with both
uniform and cluttered backgrounds. The confidence sets are
restricted to the elements of a hierarchical representation
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of leaf species based on visual similarity. We have shown
the superior performance of this hierarchical model-based
method relative to a baseline of flat classification using one-
vs-all SVM as well as the straightforward way to generate a
CS by aggregating ranked posterior masses, which is shown
to be less robust against estimation errors. In fact, the hierar-
chical methods achieved better accuracy on all the datasets,
including both flat and cluttered backgrounds.

We have also considered various levels of human interven-
tion, and demonstrated how an interactive, semi-automated
system can be utilized to obtain practical results. Our recog-
nition rates outperform the state-of-art on several challenging
datasets. Still, further improvements are necessary to deter-
mine the plant species from unconstrained photographs of
leaves with high accuracy. Using multiple leaf images per
plant or images of different organs as well as leaves (e.g.,
flowers and fruits) could potentially improve the recognition
rates and render fine-grained categorization of plants of fur-
ther interest to amateurs and botanists alike.
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