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Coarse-to-Fine Classification
and Scene Labeling

1.1 Introduction

The semantic interpretation of natural scenes, so effortless for humans, is
perhaps the main challenge of artificial vision, having largely resisted any
satisfying solution, at least in searching for multiple objects in real, clut-
tered scenes with arbitrary illumination. This problem is the motivation for
the work in this paper. Specifically, the models and algorithms presented
here result from making computational efficiency the organizing principle
for vision, a proposal recently explored in both theory (Jung 2001, Blan-
chard & Geman 2001) and practice (Amit & Geman 1999, Fleuret 2000,
Fleuret & Geman 2001); see also Lambdan et al. 1988 and Geman et al.
1995 for related examples of efficient visual search. “Theory” refers to ana-
lyzing the efficiency of coarse-to-fine (CTF) search under various statistical
models and cost structures; summarized here are the general mathemat-
ical framework, including an abstract formulation of CTF classification
based on multiresolution “tests,” and some results about optimal testing
strategies. “Practice” refers to designing computer algorithms for detecting
objects in natural scenes; several such experiments on face detection are
included together with a brief description of how the tests are realized as
image functionals.

We model scene interpretation as a dynamic and adaptive process, gen-
erating a sequence of increasingly precise interpretations. At the beginning
the labels are crude and too plentiful; there are confusions among objects
of interest and between objects and clutter. Eventually, the labels become
more precise, for instance object categories and presentations are refined,
and confusions are removed. Certain fundamental tradeoffs then evolve -
between invariance and discrimination, and between false positive error and
computation. Similar themes are explored in Riesenhuber and Poggio 1999
for visual processing in cortex.

For practical convenience, we separate the whole process of scene clas-
sification into two rough phases: non-contextual and contextual. (This
distinction was previously explored in Amit & Geman 1999.) Noncontex-
tual classification, or simply detection, comes first. The goal is to infer from
the image data instances of highly visible objects of interest under the con-
straint that no objects be overlooked (no “missed detections”), but allowing
for a limited number of false positives. Detection is the focus in this paper.
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Figure 1.1.

Figure 1.2. Characters detected during detection.

As conceived here, it is based on sparse representations and performed with
very simple operations - essentially just counting local features. The result
is a list of “classes” of objects and their “presentations” in the scene. The
desired level of detail is application-dependent; for example, the class might
be “face” rather than a specific individual and the presentation might be
no more specific than a range of values for certain pose parameters (e.g.,
position, scale and orientation). Other aspects of the presentation might
be of interest, such as the font of a character or the gender of a face.

An example of multifont optical character recognition is shown in Fig-
ure 1.1 where the objective is to identify the main symbols on the license
plate. The detection phase is illustrated in Figure 1.2. For each of the six
characters, there are multiple detections; some but not all of the detections
“near” each symbol are erroneous, due to clutter or confusions. There are
also false alarms away from the symbols of interest. This is ongoing work
with Yali Amit and will be described elsewhere.
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Contextual classification, not treated here, involves more intensive com-
putation in the vicinity of detections in order to determine which of these
are in fact objects of interest and to disambiguate among confusions, such
as D’s, 0’s and O’s detected at roughly the same location. The underly-
ing process is again coarse-to-fine. Moreover, ultimately there is no way to
avoid a fully contextual analysis in order to discover partially visible ob-
jects and other complex spatial arrangements. Processing which accounts
for context and relationships is likely to require dense representations and
be computationally intensive (e.g., involve online functional optimization).
One proposal is “compositional vision” (cf. Geman et al 2001).

If scene labeling is driven by computational efficiency, a natural and ef-
fective mechanism is CTF classification. It is certainly one way of gaining
(online) efficiency and I would argue that any other way ultimately boils
down to something similar. CTF classification depends on a CTF repre-
sentation for the family of interpretations under investigation. In other
words, the representation of objects and presentations must be structured
to accommodate coarse-to-fine search. Thus, the events of interest must
be characterized by “attributes” at many levels of resolution. CTF search
then means investigating those attributes in a particular order, namely
from coarse ones to fine ones. This is the way we play Twenty Questions.

We develop an abstract formulation of CTF classification. Roughly
speaking, we consider a series of nested (hence increasingly fine) parti-
tions of the set of possible explanations, and we define a binary “test” for
each cell A of each partition. The test X5 associated with A must always
respond “yes” to interpretations in A. The tests also have varying levels of
“cost” and “discrimination” (statistical power); both increase as cell size
decreases, and hence there is a tradeoff with invariance. The “detector”
Y is a (set-valued) function of these tests; it consists of all interpretations
which are confirmed at all levels of resolution, and is the primary object of
our mathematical analysis. More specifically, we ask: Which sequential (test
by test) adaptive evaluation of Y minimizes average computation? The an-
swer is that under wide-ranging assumptions on the statistical distribution
of the tests and how cost is measured, and among all testing strategies
based on performing tests one at a time until a decision is reached (i.e.,
Y is determined), CTF questioning minimizes the mean of the sum of the
costs of the all the tests which are utilized.

Further remarks about invariance and discrimination, and about parallel
vs. serial processing, follow in §2. The abstract formulation is given in
§3, where the statistical framework is laid out, including the definitions
of cost, invariance and discrimination, and the definition of Y. In §4 we
introduce the family of possible evaluations of the detector and a model for
measuring the computational efficiency of each candidate. Several results
on optimal strategies are mentioned in §5 without proof and the error
rates of the detector are specificed in §6. In §7, we return to the scene
interpretation problem and put everything in concrete terms, including
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how Y is constructed from image intensity data. Finally, some experiments
on face detection and concluding remarks appear in §8.

1.2 Invariance vs. Discrimination

The rationale for CTF search is intuitive and transparent. Start with prop-
erties of objects and presentations which are simple and common, almost
regardless of discriminating power; in other words, look for tests which
invariably accept as many object/pose pairings as possible, even if many
instances of clutter and non-targeted objects are found as well. Rejecting
even a small percentage of background instances with cheap and universal
tests is efficient. Then proceed to more discriminating properties, albeit
more complex and specialized; whereas a greater number of tests must be
designed or learned in order to “cover” all objects and poses, only rela-
tively few of them will be needed during any given search due to pruning
by coarser tests. Also the still significant false alarm rate is compensated by
invariance (no missed detections) and low cost termination of the search.
Finally, reserve computationally intensive, highly discriminating filters (ba-
sically, object-specific and pose-specific “template-matching”) for the very
end - for those inevitable and diabolical arrangements of clutter which
“look” like objects in the eyes of the features.

This program amounts to creating “invariants” at many levels of power.
But these are not the geometric and algebraic types sought after in con-
tinuum, shape-based approaches to object recognition. The invariants here
are based on generic local features, not special points on curves, etc. And
our requirements are more modest: Find binary image functionals which
always respond positively for a given set of shapes but may respond pos-
itively to other shapes and image structures. It is only at the level of low
invariance (specific poses) that we demand high discrimination. Conse-
quently, during the course of processing there is then a steady progression
from high invariance to low invariance and from low discrimination to high
discrimination.

The image functionals we consider in §7 are of the form

X:{ Loif Y e &2t

0 otherwise

where each & is a local binary feature which signals an “edge” is present
“near” location z; and with orientation ¢;; L is a distinguished set of edges
dedicated to a set of poses and ¢ is an appropriate threshold. (How “near”
depends on the desired level of invariance; see §7.) Thus, evaluating X
consists of checking for at least ¢ edges among a special ensemble which
characterizes a particular set of shapes - certain types of objects at certain
geometric poses. The complexity of such as test might simply be |L|. High
discrimination and high complexity corresponds to “template-matching”
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and the set L might then provide a rather dense representation of the
shapes. However, for such elementary tests, achieving high invariance (cov-
ering many poses) and high discrimination at the same time is likely to be
impossible, regardless of cost.

It is clearly impossible to find common but localized attributes of two
object presentations with significantly different (geometric) poses, say far
apart in the scene. As a result, we use a simple, “divide-and-conquer”
strategy based on object location. (Every object is assumed to have a vis-
ible, distinguished point.) One “base” detector, f’, is designed to find all
instances of objects with presentations in a “reference” cell, for example
locations confined to a k x k block and scale confined to a [omin, 20min]
where 0,,;, is the smallest scale entertained. Thq scene is partitioned into
non-overlapping k x k blocks, and the detector Y is applied to the image
data I(z),z € W in a window W centered at each such block; the dimen-
sion of W is sufficiently large to capture all objects at the given locations
and scales. Objects at scales larger than o,,;, are detected by repeatedly
downsampling and parsing the scene in the same way.

In principle, the detector could be applied to each window simultane-
ously; this is the parallel component of the algorithm. The serial component
- the CTF implementation of Y is each window - is the heart of the
algorithm and the real source of efficient computation.

1.3 CTF Classification: Abstract Formulation

Let & = {A1, A2, ...} denote a set of states or interpretations. Each subset
A C S will be called an indez. In addition, fix a probability space (Z, P)
and suppose there is a true index Y (I) for each I € Z. Although we allow
more than one true interpretation, we are primarily interested in the case
in which either Y = {A\} or Y = 0.

In the application to detecting objects, A is a pair (c,d) where ¢ is the
“class” of an object and 8 stands for the “presentation.” Even one object
class is challenging and frequently considered in computer vision. 7 is then
the set of subimages I = {I(z),z € W} and P could be taken as an
empirical measure; we shall be more specific about this later on. Finally,
Y (1) is the list of the objects and presentations appearing in I. In general,
there is at most one object which is both visible and centered in a given
w.

An important feature of the detection problem, and one that motivates
an upcoming approximation of P, is that P(Y = @) > P(Y = A) for any
given A. We might even assume that P(Y = () > P(Y # 0), so that the
most likeliy interpretation is that there are no states “present” in I. Write
P, for P(|]A €Y) and P, for P(.|Y =0).
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Figure 1.3. Left: The cost vs. discrimination tradeoff at two levels of invariance,
“high” (solid line) and “low” (dashed line). Right: The invariance vs. discrim-
ination tradeoff at two levels of cost, “low” (solid line) and “high” (dashed
line).

Shortly we shall define a detector Y based on a family of functions X :
Z — {0,1} called tests. The basic constraint on Y is zero false negative
€erTor:

PYycYy)=1 (1.1)
Equivalently,
P(AeY)=1, VA€S.

Assume each test has a cost or complexity ¢(X) which represents the
amount of online computation (or time) necessary to evaluate X and of
course depends on how X is constructed. The invariant set for X is A(X) =
{\ : P\(X = 1) = 1}. Finally, the discrimination or power of X is defined
as B(X) = Py(X = 0). The tradeoff between cost and discrimination at
different levels of invariance is shown in the lefthand panel of Figure 1.3; the
righthand panel shows the tradeoff between invariance and discrimination
at different costs.

Suppose we are given a family of tests X = {Xa,A € A} where the
notation X means that A = A(X). The reason for indexing the tests by
their invariant sets is that we will build tests to a set of specifications.
Basically, we first design a hierarchy of subsets of S and then, for each A
in the hierarchy, we build a test X which is invariant with respect to the
classes and poses in A.

Now define V(I) ¢ S,I € Z, by

V() =Y (X)) ={\: Xa(I) =1 VA € A}. (1.2)

The rationale is that we accept a state A as part of our interpretation if and
only if this state it is “verified” at all levels of resolution, in the sense that
each test X which “covers” A (meaning A € A(X)) responds positively.
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Figure 1.4. An example of a tree-structured evaluation of the detector Y

1.4 Computation

Consider now adaptive (sequential) evaluations of Y, i.e., tree-structured
representations of Y. Let 7 be the family of such evaluations. Each internal
node of T' € T is labeled by a test X, and each external node is labeled by
an index - a subset of states. Our goal is to find the 7" which minimizes the
mean cost of determining ¥ under assumptions on how ¢(X) varies with
B(X), and how X is distributed under the “background model” Fy.

To illustrate such a computational procedure, take a simple example
with & = {A1, A2} and three tests corresponding to Ai s = {M, A2}, A =
{M}, Ay = {A2}. One evaluation of ¥ is shown in Figure 1.4 where
branching left means X = 0 and branching right means X = 1.

Notice that ¥ = 0 if and only if there is a null covering of A: a subfamily
{A;} such that |J; A; = S and and X,; = 0 for each i. In Figure 1.4, one
null covering corresponds to {Xx, =0, X4, = 0} and one to {X4,, = 0}.

1.4.1 Mean Cost
The cost of T is defined as
= Z 1HTC(X’I"
reTe

where T° is the set of internal nodes of T, X, is the test at node r and
H, is the history of node r - the sequence of test results leading to r.
(Equivalently, C(T') is the aggregated cost of reaching the (unique) terminal
node in T determined by X.) Notice that C'(T) is a random variable. The
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mean cost EC(T) is then

EC(T) = Z c(Xr)P(H;) (1.3)
rel°
= ZC(X)P(X per formed in T) (1.4)
X

The second expression (1.4) is useful in proving the results mentioned in
the following section.
Our optimization problem is then
min EC(T 1.5
iy EC(T) (15)
In other words, find the best testing strategy. As it turns out, the best
strategies are often far more efficient than 7”s constructed with top-down,
greedy procedures, such as those utilized in machine learning for building
decision trees; see Geman & Jedynak 2001 for comparisons.

1.4.2 Hierarchical Tests

In order to rank computational strategies we must impose some structure
on both A and the law of X. From here on we consider the case of nested
binary partitions of S:

A={Apm;j, j=1,..,2" m=0,1,.., M}

Thus, AO,l = A1’1 UALQ, A1,1 = A2’1 UA272, etc. In §7, in experiments with
a single object class, the hierarchy A is a “pose decomposition” wherein
“cells” at level m+1 represent more constrained poses than cells at level m.
As m increases, the level of invariance decreases and, in the models below,
the level of discrimination increases. This tree-structured hierarchy should
not be confused with a tree-structured evaluation T of V. The label ¥ at a
terminal node of T' depends on X and consists of all states in any level M
cell of A for which there is a “1-chain” back to Ag 1, i.e., Xx» = 1 for every
A DA

As a simple illustration, consider the case M = 2, in which case there
are exactly seven sets in the hierarchy. Notice that the most refined cells
Ay ;,5 =1,2,3,4, may each contain numerous states A, i.e., may provide
an interpretation at a level of resolution which is still rather “coarse.”
Figure 1.5 shows Y (X) for two realizations of X. For the same hierarchy
and realizations of X, the lefthand panel of Figure 1.6 illustrates a “depth-
first” CTF evaluation of Y and the righthand panel a “breadth-first” CTF
evaluation.

Another way to interpret V is the following: For each level m in the
hierarchy define

}Afm (X) = U Am,;
J€Im(X)
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Figure 1.5. Examples of Y for two realizations of the tests in a nested hierarchy

with three levels. Dark circles represent X = 1 and open circles represent X = 0.
Top: There are two “chains of ones”. Bottom: There is a null covering.
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Figure 1.6. As in Figure 1.5, dark and light circles indicate positive and negative

tests for a three level hierarchy. Left: A “depth-first” coarse-to-fine search. Right:
A “breadth-first” coarse-to-fine search.
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where J, = {1 < j < 2™ : X, ; = 1}. The detector Y is Ny Y. We can
think of Y,, as an estimate of Y at “resolution” m. Necessarily, Y C Yo
for each m, although in general it needn’t happen that Y,,1; C Y, (or
vice-versa).

1.4.3 An Approxzimation

We are going to assume that the mean cost is computed with respect to the
background distribution Py. This is motivated by the following argument.
Recall that labeling the entire scene means applying the detector Y to
subimages I centered on a sparse sublattice of the original scene. Whereas
the likelihood of having some objects in the entire scene may be large, the
a priori probability of the “null hypothesis” ¥ = ) is approximately one
when evaluating Y for an arbitrary subimage at the scale of the objects.
Therefore, the average amount of computation involved in executing our
detection algorithm with a particular strategy T can be approximated by
taking the expectation of C(T") under Py. Of course this approximation
degrades along branches with many positive test responses, especially to
discriminating tests associated with “small” class/pose cells, in which case
the probability of an object being present may no longer be negligible. If
one were to measure the mean computation under an appropriate (mixture)
distribution, the conditional distribution of the tests under the various ob-
ject hypotheses would come into play. Nonetheless, we continue to compute
the likelihood of events under Py alone, thereby avoiding the need to model
the behavior of the tests given objects are present.

1.5 Optimality Results

For simplicity, write X, ; for X4, ;. From here on, we make the following
assumptions about the the distribution of X:

o {X,,,;} are independent random variables under Pp;
® Bmj=PFPo(Xp;=0)=pm, m=0,1,..,M;

¢ fo <P << Bus

o «(Xpm,j)=cm, m=0,1,..., M;

e ¢y = P(B,,) with ®(0) = 0 and ® increasing.

The independence assumption is violated in practice, but we make it in
order to facilitate a theoretical analysis. The other assumptions are realistic,
partly by design, although the power of the tests may differ slightly within
levels.
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Figure 1.7. The CTF strategy tree for the case M = 2.

1.5.1 TestingY =0 vs.Y #0

Consider first the problem of determining whether or not ¥ = @, in other
words, evaluating Z=1 iY e The set-up is the same, except the terminal
labels of T are simply “0” or “1.” This problem was studied in Fleuret
1999 and Jung 2001 under the assumption that ® is convez, i.e., cost is a
convex, increasing function of power. One strategy is the depth-first CTF
strategy, illustrated in Figure 1.7 for the case M = 2.

In Figure 1.8 two particular sample paths (branches) are depicted from a
depth-first, CTF search of a five level hierarchy. The path on the left leads
to the label Z =0 and the one on the right leads to Z = 1.

The following result is proved in Jung 2001; earlier, Fleuret 2000 had
shown that the coarsest test (Xo,1) is necessarily at the root. The convexity
assumption can be relaxed to supposing that E—Tmn isincreasing, m =0, ..., M.
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Figure 1.8. Two branches from a depth-first CTF search for a hierarchy with
five levels. The tests are explored in the indicated order, with grey indicating a
positive answer and white in bold outline indicating a negative answer; the other
tests were not evaluated. Left: A null covering is encountered, ending the search.
Right: A chain of ones is encountered (grey in bold outline), ending the search
when the goal is to determine if ¥ = ().

Theorem: If ® is convez, and P = Py, depth-first CTF search is the
optimal strategy for evaluating Z.

1.5.2  Determining Y

Here the objective is to determine all 1-chains instead of merely whether
or not one such chain exists. For either CTF strategy, the expected cost
under P is

M m—1
E()C(T) = + Z Cm2m H (1 - /BJ)
m=1 j=0
As it turns out, this is the smallest possible mean cost:

Theorem: The CTF strategy is optimal for any increasing cost sequence
if Bo > .5

The proof of this result, and others based on varying cost models and test
hierarchies, will appear in Blanchard & Geman 2002.

1.6 Error

We briefly discuss the theoretical error rates of the detector Y defined in
(1.2).
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In principle, the false negative rate is null. (Of course, in practice, this
requires that X be invariant for A, which can be difficult to achieve.) The
false positive error

§(V) = Py(Y #0)

is determined by the (joint) distribution of {X,, ;} under Py, and depends

on fo, ..., Br- The rate per pizel is then 6?2/); recall that the search for

object locations is conducted in non-overlapping k X k blocks. A crude
bound is to replace the probability of at least one 1-chain under Py by the
sum of the probabilities, yielding

M
5(V) < 2™ [[ (- 8m)
m=0
< EVMHa 7 =2(1 - po)-

2

To calculate (5(17) exactly, notice that there is a one-to-one correspon-
dence between realizations of a breath-firss CTF evaluation of ¥ and
realizations of a branching process with M generations starting from a
single individual. Consequently,

Theorem: The false positive error 6(17) is the probability of no extinc-
tion for a non-homogeneous branching process with binomial family low
Bin(2,1— B,,) at generation m =0, ..., M.

1.7 Application to Face Detection

Recall that each A € S corresponds to the presentation or instantiation of
an “object” in a predetermined library. The presentation includes informa-
tion about the position, scale and other aspects of the geometric pose, and
perhaps other properties of interest.

1.7.1 One Generic Class

Consider the simplified scenario of one generic object class and linear pose.
More specifically, consider the problem of detecting all instances of frontal
views of faces. The global procedure is to parse the scene at various scales,
and at a sampling of locations, with a window of size 64 x 64, in each
case applying a detector which computes the list of poses present in the
window. In this case, the output Y of processing a window is simply a list
of poses. What follows is a brief description of the algorithm; the details
can be found in Fleuret & Geman 2001.
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1.7.2 Pose Decomposition

The pose of a face is defined in the image plane, given by 6 = (z,0,¢),
where 2z is the center point between the eyes, o is the distance (in pixels)
between the eyes and 1 is the “tilt.” The image is partitioned into non-
overlapping 8 x 8 blocks, and the basic detector Y is applied to the image
data in a window centered at each such block. These windows are the
subimages in Z in the previous sections. The detector Y produces a list of
poses with 2 € [28,36]%,8 < 0 < 16, —20° < 1 < 20°; of course in this case
these are either false alarms or responses to the same face. Call this set of
poses the “reference cell” Ag 1. Faces of scale 16 < o < 32 are found by
downsampling the original scene and parsing again, etc.

The hierarchy {A,, ;} of subsets of (reference) poses is constructed by
recursively partitioning Ag ; into a sequence of nested partitions; each cell
A of each partition is a subset of poses which is included in exactly one of
the cells in the preceding, coarser partition. At each level m =1,2,..., M,
one component of the pose 6 is subdivided into equal parts - binary splits
for scale and tilt and quaternary splits for position. Thus, for example, each
cell Ay j,7 =1,2,3,4, of the the first partition corresponds constraining z
to one of the four 4 x 4 subsquares of of the initial 8 x 8 square. There are
two splits on z, two on ¢ and two on v, resulting in M = 6 levels (excluding
the root).

1.7.8 Learning

Each test X, ; = Xj,, ; checks for a certain number of distinguished edge
fragments, and hence is defined by a list L,, ; of edges and a threshold (as
described in §2) both determined during training. Consequently, the tests
X are simply counting operators. Checking for an edge means evaluating
a binary local feature & indexed by a position z; and an orientation ¢
as described in §1.2.1. However, there is another, crucial, parameter - the
“tolerance” of the edge - which allows one to achieve invariance to the
poses in A. (The MAX filter in Riesenhuber and Poggio 1999 has the same
aim.) The tolerance 7 is the length of a strip of pixels centered at z; and
perpendicular to the direction of the edge. The feature & = 1 if there is an
edge at the given orientation at any location in the strip. Thus, 5 controls
the amount of ORing, which in turn depends on the desired degree of
invariance. All £ in the list have the same 7. The tolerance 7 is “large” for
the coarse cells Ay, ; and “small” for the fine cells. It controls the tradeoff
between invariance and discrimination.

All the tests X,,; in the hierarchy are built with the same learning
algorithm; the lists differ due to varying training sets, corresponding to
varying constraints on the set of poses. The experiments shown here are
based on the ORL database which contains 400 grayscale face pictures of
size 112 x 96 pixels. For each cell A, ;, a synthetic training set of 1600
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face images is constructed whose poses are in Ay, ;. Again, the details are
in Fleuret & Geman 2001, including how the lists of edges &,l € L are
chosen.

1.8 Experiments and Conclusions

The experiments use a breadth-first CTF evaluation of Y. Nearby detec-
tions are clustered, resulting in one estimated pose per face, indicated by
a triangle. The false negative rate is not null, and there are false posi-
tives, on the order of 1 — 10 per scene on average. Thus, when computation
is efficiently organized, one can use very simple components (such as the
counters X described in the previous section) and still achieve reasonable
error rates, in fact comparable to the best ones reported in the literature
for high resolution images; see for example Rowley 1999. In addition, de-
tection is extremely fast, well under one second for a scene on the order
of 400 x 400, which is faster than previously reported results. Two results
are shown In Figures 1.9 and 1.11. As seen in Figure 1.12, coarse-to-fine
processing leads to highly asymmetric scene processing in terms of spatial
concentration, with orders of magnitude differences in the application of
resources to different regions of the scene.

Recall that detection is far from a complete solution to scene interpre-
tation. It leaves confusions unresolved and does not address occlusion and
other complicating factors. Many examples of such specific class/pose con-
fusions can be seen in a higher resolution rendering (not shown here) of
the labeled detections in Figure 1.1. However, if highly visible objects are
sure to be detected with a limited number of false alarms, it may then
be computationally feasible to entertain very intense processing which is
optimization-based but highly localized.

Finally, for detection, we can suppose that each test is constructed during
an offline training phase, as in the previous section. Indeed, since we are
not anticipating the specific confusions and occlusion patterns that might
arise, we can afford to make a list of all the tests we wish to construct, learn
them during training, and store all the instructions for execution. On the
contrary, during contextual classification we might be obliged to generate
hypotheses and construct tests online, i.e., during scene parsing. Such ideas
are currently being explored in the context of character recognition.
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Figure 1.12. The coarse-to-fine nature of the algorithm is illustrated for the group
photo by counting, for each pixel, the number of times the detector checks for
the presence of an edge in its vicinity. The level of darkness is proportional to
this count.



