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ABSTRACT

We describe a new face detection algorithm based on a hierarchy
of support vector classifiers (SVMs) designed for efficient com-
putation. The hierarchy serves as a platform for a coarse-to-
fine search for faces: most of the image is quickly rejected as
”background” and the processing naturally concentrates on re-
gions containing faces and face-like structures. The hierarchy
is tree-structured: In proceeding from the root to the leaves, the
SVMs gradually increase in complexity (measured by the num-
ber of support vectors) and discrimination (measured by the false
alarm rate), but decrease in the level of invariance. Reduced com-
plexity is achieved by clustering support vectors and shifting the
decision boundary in order to satisfy a ”conservation hypothesis”
that preserves positive responses from the original set of support
vectors. The computation is organized as a depth-first search and
cancel strategy. The gain in efficiency is enormous.

1. INTRODUCTION

Face recognition is becoming a key ingredient, and chal-
lenge, for many applications, such as authentication and
database indexing. These applications require very rapid
face detection (and perhaps accurate pose estimation in or-
der to extract the face) due to time limitations and the large
amount of data. Several methods for face detection are dis-
cussed in the literature, including artificial neural networks
[1], support vector machines [2], Bayesian inference [3], de-
formable templates [4], graph-matching [5] and skin color
learning [6]. In this paper, we present a hierarchical face
detection algorithm based on SVM classifiers. As in [7],
the goal is to quickly reject background subimages and fo-
cus the processing on faces and face-like structures. Using
the same “pose decomposition” as in [7], we obtain an ac-
curate face detector based on a tree-structured network of
SVM classifiers which is also fast due to using only very
crude SVMs at the beginning followed by a steady increase
in complexity (measured by the number of support vectors).

2. POSE DECOMPOSITION

We denote by
� � � � � 	 � � 

the pose (position, tilt and scale)
of a face. The set of poses is recursively subdivided, result-
ing in a nested family of partitions; � denotes a generic cell.
Building the hierarchical detector necessitates training an
SVM classifier for each pose set � , whose cost increases as
the size of � decreases. In addition, the SVM dedicated to �
is, in principle, invariant to � in the sense of responding pos-
itively for face presentations with pose in � . (cf. Fig.1.(B)).
The definition of the sets � is similar to that in [7] and the
training data for � is produced by randomly generating a
certain number of faces images at various appearances from

� starting from an initial dataset.
The face position

�
is taken as the midpoint between the

eyes, the scale
�

as the distance between the eyes and the tilt	
is relative to the axis perpendicular to the segment joining

the eyes. A scene is processed by visiting non-overlapping� � � � �
blocks and processing the surrounding image data

to detect all faces whose position falls in the block and
whose scale

�
lies in the interval � � � � � � �

; the range of tilts
is � � � � � � � � �

. Faces at scales � � � � � � � �
are detected by re-

peated down-sampling of the original image, once for scales
� � � � " � �

, twice for � " � � $ � �
and thrice for � $ � � � � � �

.

3. FEATURES, LEARNING AND SVMS

Throughout this section our objective is to build a SVM for
a given pose cell � , based on the related training examples.
The full set of pose cells is described in ' 4. We refer to the
hierarchical family of classifier where each node contains
an SVM classifier ( as the f-network.

3.1. Features and learning

The basic training for SVMs [8] involves finding an linear
hyper-plane which optimizes generalization capability, i.e.,
performance on unseen examples. We are given ) observa-
tions * + - / 1 with associated labels 2 + � 3 � � � 6 6 6 � ) . The
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representation * + of a face is the
$ � $

array of low fre-
quency coefficients of the Daubechies wavelet transform for
a

� " � � "
subimage; the subimage contains the face in the

sense that the position
�

falls in the
� � � � �

block centered in
the subimage. The label 2 + is positive if the reference win-
dow contains a face, strictly negative otherwise. Our objec-
tive is to train a mapping * < > 2 � ( @ � * � B 

for a vector of
parameters

B
, where ( @ � * � B  � E F H+ J K B + 6 2 + 6 L � * � * +  � O

.

3.2. The f-network vs. the g-network

SVM classifiers have proven to have a good generalization
capacity and be easily trained. They do, however, have the
disadvantage of a prohibitive online cost (evaluation of the
decision function), at least with respect to many other clas-
sifiers. Consequently, evaluating the f-network on each pat-
tern * is very costly 1. Various proposals have been made
to reduce the complexity of the form of an SVM decision
boundary. Burges et al [9] introduced the “reduced set”
technique which generates a set of support vectors and as-
sociated weights in an optimization framework, but more
complex than the original one since the minimization is car-
ried out in a space of dimension Q � R S

, where Q is the
dimensionality of the data and

R S
is the required number

of support vectors (“the simplification”). Our approach is to
learn, for each pose cell � , a simplified SVM decision func-
tion T @ which depends on the training set for � and whose
complexity depends on the level (depth) U � � 

in the hier-
archy. We refer to this simplified hierarchy of SVMs as the
g-network. Since we use a coarse-to-fine strategy for eval-
uation of the network, the decision functions at the upper
levels of the g-network must be rapidly computed and yet
respond negatively - and hence “cancel” the evaluation of
all finer SVMs in the associated subtree - in the majority of
cases. This is possible since only a small percentage of the
subimages visited actually have faces.

3.2.1. Building the g-network

Again, our objective is to build a simple classifier T @ for
separating two classes: subimages with and without a face
with pose in � . Let

R V
and

R W
denote, respectively, the

number of support vectors for ( @ and T @ . Since we will
choose

R W Y Y R V
, T @ will be evaluated more efficiently

than ( @ . Let ] V ^ � _ * K � 6 6 6 � * F a b be the set of support vec-
tors obtained after standard training using samples of faces
with poses in � . In what follows, we aim to create a new,
smaller set of support vectors ] W ^ � _ e K � 6 6 6 � e F g b , called
the reduced set. The simplified SVM for � is then of the
form

W ^ h i k l n J o q gs t u l s v w s v x h i k z s n | } ~
.

1Not all the SVMs in the network are in general evaluated; there is a
coarse-to-fine process which starts with the SVM at the top of the hierar-
chy (network) and then performs a depth-first search; usually very few of
SVMs are evaluated. See � 4 and [7].
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Fig. 1. (A) Simplification of the decision function leads to missed
detections and false alarms. (B) The hierarchical description of the
g-network in terms of cost, invariance and false alarms.

We use the clustering algorithm in [10] to first cluster
the original set of support vectors in terms of spatial prox-
imity. The candidates for support vectors in the reduced set
are the cluster centers. Let � be the number of centers af-
ter clustering the set ] V ^

and let U be the depth of � in the
hierarchy, with U � �

for the root cell and U equal to the
maximum (tree) depth for a leaf cell, say � . Then we take

� � R V � � 1 � � as an upper bound on the size of ] W ^
. Thus

the root SVM in the g-network has at most
R V � � 1 support

vectors whereas the SVMs at the leaves of the g-network
are the same as the SVMs at the leaves of the f-network, i.e,
there is no simplification for the finest pose cells. In addi-
tion, for non-leaf cells deep in the hierarchy the modeling
capacity is little changed, i.e., degrades slowly with the re-
duction in the number of support vectors.

3.2.2. The conservation hypothesis

One important difference between T @ and ( @ , particularly
near the root, is that without further modifications, T @ is
in general no longer an invariant for faces with poses in �
(cf. Fig.1.(A)). The conservation hypothesis we impose is
that, for any given pattern * , if ( @ � * � B 

is positive then
T @ � * � � 

must also be positive. Notice that positivity of
( @ for “large” � by no means signals a face as there is a
non-trivial false alarm rate. On the other hand, we can as-
sume that ( @ � * � B  � �

for nearly all face patterns * . Let_ � � � 3 � b @ � _ � � � 3 � b @
| � _ � � � 3 � b @ � and (resp.

_ � � � � b @ )
be the training (resp. testing) set for poses in � . We intro-
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duce the following measures of efficiency for T @ :

� � � � � � � � � � � � � � � �   � ¡ � ¢ £ ¤ ¦ § © ª � ¡ � ¢ « ¤ ® § �
� � � � � � � � � � � � �   � ¡ � ¢ £ ¤ ¦ § �

¯ � � � � � � � � ° ± � � � �   � ¡ � ¢ £ ¤ � ² § ¢ ³ ´ © ª � ¡ � ¢ « ¤ ® § �
� � � � � � ° ± � � � �   � ¡ � ¢ £ ¤ � ² § ¢ ³ ´ �

· � � � � � � � � � � � � � ¹� � ª � ¡ � ¢ « ¤ ® § �
� � � � � � � � � � � ¹� �

We regard the fractions º @ and » @ as the empirical train-
ing and testing risks, respectively, relative to positive exam-
ples. A null empirical training risk guarantees that all the
face training examples are classified as positive using T @ .
The empirical testing risk is a measure of error in terms of
the fraction of test face examples which are mis-classified
by T @ among those belonging to the observation region be-
tween positive support vectors and the decision boundary
under ( @ . Finally, the factor ¼ @ is an empirical measure of
“background rejection efficiency” (statistical power) of T @ .

3.2.3. Bias variation

We want each T @ to satisfy the conservation hypothesis and
have as high a background rejection efficiency ¼ @ as possi-
ble. We introduce a bias variation technique to enforce the
conservation hypothesis, at least empirically (i.e., º @ � �

),
by subtracting (if necessary) a bias ½ @ from T @ in order to
force the classifier to respond positively to all the face train-
ing examples (belonging to the � ) at the expense of a reduc-
tion in background rejection efficiency.

Let ¾ �@ be the set of negative support vectors for ( @ .
We consider three possible choices ½ K @ � ½ ¿ @ � ½ À @ for ½ @ . In
each case, we define ½ Á @ � �

if there are no misclassified
face training examples. Otherwise they are given by:

Ã Ä � Å Æ È Ê Ë Í � Î Ï Ð Ñ Ó Ï Ð Ô Ë Õ Ö × È Ê Ø Ú� Ø (1)

Ã Û � Å Æ È Ê Ë Í � Î Ï Ð Ñ Ó Ï Ð Ô Ý ¹� Þ Ë Õ Ö × È Ê Ø Ú� Ø (2)

Ã ß � Å Æ à á È × Ê Ë Í � Î Ï Ð Ñ Ó Ï Ð Ô Ý ¹� Þ Ë Õ Ö × È Ê Ø Ú� Ø (3)

Clearly ½ K @ is the smallest negative bias in
_ � � � 3 � b

|
@ , and

represents the negative of the maximum distance from the
decision boundary for T @ to a (misclassified) positive train-
ing example. Thus, ª Ä � ¡ � ¤ � ª � ¡ � ¤ â ã Ä � will classify as
positive all examples in

_ � � � 3 � b @
|

. In this case, the back-
ground rejection efficiency is high. However, since we have
shifted the decision boundary by the minimum amount nec-
essary to guarantee the conservation hypothesis (null º @ ),
the empirical testing risk » @ is relatively high, which means
T K @ is likely to miss some unseen faces examples, mainly
those which reside in the margin space. Using the bias ½ ¿ @
preserves a null empirical testing risk but significantly de-
creases ¼ @ , which results in an inefficient classifier ª Û � ¡ � ¤ �
ª � ¡ � ¤ â ã Û � in terms of background rejection. The bias ½ À @
offers a good balance between ¼ @ and » @ with º @ � �

.

3.2.4. The coarse-to-fine search strategy

Given a pattern * , an encoded subimage using the Daubechies
wavelet transform, we apply a depth-first search (and can-
cel) strategy as described in [7] in order to generate the final
answer, face or background, of the network. The global
classifier, i.e., the g-network, declares a face if and only if
there is at least one complete “chain” of positive responses
from the root SVM to a leaf SVM. The search terminates
upon finding a positive chain and the pattern * is classified
as a face with pose given by an average from the leaf cell.
Equivalently, the network responds negatively if an only if
there is a “null covering” of the hierarchy in the sense of a
collection of negative responses whose corresponding cells
cover all poses; the search is terminated upon finding such
a null covering. Thus, for example, if T @ ä �

for the root
cell � , the search is terminated as there cannot be a chain of
ones.

4. EXPERIMENTS

In this section, we provide an evaluation of the coarse-to-
fine g-network classifier in terms of background rejection
efficiency, detection rate and processing time. We collected
100 images from the CMU database and 100 images from
the online CMU web demo. Experiments involve scenes
with frontal views of faces, and we use for training the
Olivetti database containing 400 faces of 40 individuals which
are used to synthesize 2000 faces initially for each cell de-
tector. We note that this training set is at least an order
of magnitude smaller than those typically used for training
SVMs and neural networks.

4.1. Generalization

By the conservation hypothesis we know there is a chain
of positive responses for both networks for every positive
training example. We cannot of course guarantee that every
(unseen) positive example is classified as a face by either the
f-network or the g-network, or that positive classification by
the f-network implies the same by the g-network. However,
in our experience, the false negative error rate of each SVM
in the f-network is extremely small, which means there will
be a chain of ones for nearly every face. Moreover, in such a
case, we nearly always observe a chain of positive responses
in the g-network as well. In particular, the false negative
rate of the g-network is quite reasonable (see 4.2). These
tradeoffs will be explored in more detail elsewhere.

4.2. Background rejection and face detection efficiency

We estimate the background rejection efficiency æ / ç � for
each level U by the fraction of the visited patterns which
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Table 1. Background rejection efficiency ( è é ê ì ) and face de-
tection rates ( î ï é ì ) of the SVM network for different levels ñ
in the hierarchy.

Level ñ in è é ê ì î ï é ì Mean number
the hierarchy of SVs

0 (Coarsest cell) 77 % 100 % 19
1 (Translation split) 82 % 100 % 39
2 (Translation split) 86 % 100 % 79
3 (Translation split) 88 % 100 % 158
4 (Rotation split) 91 % 100 % 321
5 (Scale, finest split) 96 % 87.6 % 622

were rejected by the g-network (cf. Table.1). We also esti-
mated the face detection rate ó ô / � by the fraction of face
patterns which were classified as positive by at least one de-
tector belonging to the level U . In what follows, U ranges
from 0 (the root) to the depth of the tree. It can be seen
from the previous table that missed face rates are

� õ
at ev-

ery level in the hierarchy except at the finest one.
In our experiments, ö ö õ

of the traversed patterns from
natural images were rejected by the coarsest SVM in the g-
network, which has only 19 support vectors; this is 30 times
faster than computing the corresponding f-classifier. Recall
that the two networks coincide at the leaf cells.

Fig. 2. Detected and localized faces.

The coarse-to-fine classifier detects
$ ö 6 � õ

of the faces
in our testing set, which is roughly similar to the perfor-
mance of other methods, perhaps somewhat worse. The
false alarm rate per visited pattern (

" ÷ � � � � ø ) is quite low,
and corresponds on average to 2 or 3 false alarms per im-
age. The g-network is far more efficient than the f-network
as it requires 8(s) whereas the f-network requires 120(s)
to process an image of dimension

" ÷ � � ù ÷ �
using a 450

Mhz PentiumII. This is faster than [1] and [2] and slower
than [7]. Other measures of efficiency should also be con-
sidered, such as the training complexity; one must solve a
constrained quadratic programming problem in a dimension

equal to the cardinality of the training set. Many buffering
techniques, such as those in [2], can be applied to increase
the training set for a particular pose set. Obviously, there
are many tradeoffs to consider in terms of the training cost,
the number of support vectors and error rates.

5. CONCLUSION AND FUTURE WORK

We presented a new “coarse-to-fine” face detection algo-
rithm based on SVM classifiers. Many techniques in the lit-
erature perform face detection using a pose-dedicated clas-
sifier which is applied to all possible locations, scales and
rotations. This exhaustive search is very expensive and in-
efficient. In contrast, the coarse-to-fine exploration of face
presentations was performed by building increasingly com-
plex SVM decision functions for increasingly more con-
strained sets of poses. Clustering and “bias variation” tech-
niques were introduced in order to build optimized decision
boundaries for each cell for a given number of support vec-
tors. Bias variation allows one to impose a “conservation
hypothesis” about the empirical risk relative to positive ex-
amples and at the same time to reject as many background
samples as possible. We are currently investigating various
tradeoffs, such as those between background rejection effi-
ciency and the number of support vectors, among various
training parameters, and between the performance of the g-
network and f-networks. We are also investigating extend-
ing this coarse-to-fine framework to include other aspects of
the presentation of a face (3D pose, partial occlusion,etc).
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