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Abstract

We introduce a new method for analyzing gene expression microarray data
which is based entirely on comparing the mRNA counts of selected pairs of
genes. The results are invariant to normalization and, apart from gene pair
selection, there are no parameters to estimate, thereby avoiding some liabili-
ties of standard techniques, such as sensitivity to pre-processing and inflated
estimates of performance. In addition, the decisions are highly transparent,
even to nonspecialists in class prediction and statistical learning. On the other
hand, due to a search over all pairs of genes, certain issues must be addressed,
such as computational complexity and tests of significance.

We have applied the method to detecting disease, identifying tumors and
predicting treatment response. Some results with breast, leukemia and prostate
cancer data are summarized, including a comparison with a variety of other
methods (PAM, k-NN, SVM and DLDA) in predicting relapse from breast
cancer. In general, we achieve comparable or even higher prediction rates
with far fewer genes.



1 Introduction

We introduce a new method for classifying gene expression profiles in which pre-
dictions are based entirely on pairwise comparisons. Consequently, we attempt to
differentiate between two classes by finding pairs of genes whose expression levels
typically invert from one class to the other. Our approach is a particular instance of
a larger class of rank-based methods in which the expression levels are immediately
replaced by their corresponding ranks (i.e., most heavily expressed, second most
heavily expressed, etc.) determined across all genes assayed using a single DNA
microarray. Such methods are robust to quantization effects and are invariant to
pre-processing designed to overcome chip-to-chip variation, such as normalization
methods [26], under the very mild assumption that normalization preserves order-
ing.

We will focus on the simplest example of comparison-based classification — the
“top-scoring pair(s)” or TSP classifier. The participating pairs are those which
achieve the largest “score” relative to a simple measure of discrimination and each
of these pairs “votes” for the class which makes the observed ordering within that
pair the most likely. There are no parameters to tune.

Clearly information is lost using a rank-based procedure. However, the results
reported here, and in our technical report [12], demonstrate that the amount of
information residing in the ordering of gene expression levels is more than suffi-
cient to perform classification at least as well as other methods. Indeed, in many
cases, including the prostate and two breast cancer studies featured here, accurate
prediction can be achieved by comparing the expression levels of a single pair of
genes.

One motivation for our work is the small-sample dilemma in the statistical
analysis of microarray data, which was one of the principal themes of Interface 2004
and is well-documented in the literature [8, 18, 19, 25]. When measured against the
number of features, and the complexity of the biological systems under study, the
amount of data available for modeling and inference is severely limited. Discovery of
the underlying structure within these data, in particular correlation patterns or even
higher-dimensional interactions, is exceedingly difficult in this small-sample regime.
Moreover, there is already evidence [8] that relatively simple classification methods
(as in [22]) are competitive with more complex ones, such as as neural networks
[1, 2, 14], decision trees [4, 6, 28] and support vector machines [17, 27]. Furthermore,
reported success rates for class prediction are likely to be inflated [8, 19] unless all
aspects of learning a classifier, in particular all choices of parameters, are properly
validated. In our case there are no parameters to cross-validate.

Another motivation is to avoid opaque decision-making. Standard methods
in statistical learning typically result in predictions based on nonlinear functions
of many expression values, and consequently highly complex decision boundaries
between the classes of interest. Such boundaries are then difficult to summarize in
simple terms or to characterize in a manner which is biologically meaningful. In
contrast, the TSP classification rule is evidently transparent.

We demonstrate the efficacy of this method in two comparisons: First, we
summarize results from [12] on several gene expression data sets involving breast,
prostate and leukemia cancers, providing prediction rates from source material as
well as for the TSP classifier. (Some rates reported in the cited references are not



properly validated (e.g., with a test set or by full cross-validation) and are consid-
ered to be biased [19, 8].) Second, we consider a recent study about the prognosis
for relapse from breast cancer and compare the TSP classifier with a variety of
other popular classification methods using publicly available software. We believe
these results demonstrate that our method is clearly more efficient in terms of the
number of genes utilized while maintaining at least comparable accuracy.

2 Comparison-Based Classification

Consider G genes whose expression levels X = { X7, X5, ..., X} are measured using
DNA microarrays and regarded as random variables. Each profile X has a true
class label in {1,2,...,C}. For simplicity, we assume C = 2, although the results
extend to higher numbers of classes. Let R[i] denote the rank of X; relative to X,
where R[i] = 1 means that X; is the smallest value in X, R[i] = 2 denotes the
second smallest value, etc. Assume no ties for simplicity, that is, R[i] < R[j] if and
only if X; < X;. Note that ranking is within profiles for each fixed experiment, not
across experiments for each fixed gene as in nonparametric methods for detecting
differentially regulated genes (see, e.g., [18]). Consequently, R = R[1],..., R[G] is a
permutation of {1,2,...,G}.

Obviously X contains more information than R and the mutual information
between Y and X will be greater than that between Y and R. Nonetheless, there
may be enough information in R to strongly reduce the uncertainty about the class.

2.1 Pair Scoring

We will exploit discriminating information in the ranks R[1], ..., R[G] by focusing
on detecting “marker gene pairs” (i, j) for which there is a significant difference in
the probability of X; < X; from class 1 to class 2. Profile classification is then
based on this collection of distinguished pairs. Notice that knowing the result of all
pairwise comparisons (R[i] < R][j]) is equivalent to knowing R. Here, the statistics
of interest are p;;(c) = P(X; < Xj|¢), ¢ = 1,2, i.e., the probabilities of observing
X; < Xj in each class. These probabilities are estimated by the relative frequencies
of occurrences of X; < X within profiles and over experiments. Consequently, for
our analysis it is sufficient to know the ranks of the expression values within profiles
on each microarray.

Let A;; = |pi; (1) — pi;(2)] denote the “score” of (i, j). An example of computing
a score is provided in Table 1. We seek gene pairs with “large” scores.

2.2 Pair Selection

Detection of marker gene pairs is a problem in feature selection, and plays the
same role in our analysis as finding individual marker genes does in more standard
methods [9, 18, 22, 21]. One option for pair selection might be to first select
differentially-regulated or “marker genes” and only then proceed from individual
genes to gene pairs by restricting the search for marker pairs to pairs of these marker
genes. But two major drawbacks would ensue: 1) such post-filtering results would
no longer be invariant to normalization; and 2) by construction, only differentially
expressed genes could appear in the selected comparisons, thereby possibly losing



X, <X; | Xi> X
class 1 8 36 44
class 2 30 4 34

Table 1: An example of scoring a gene pair from the breast cancer prognosis study.
Expression levels for about 25,000 genes are obtained for 44 profiles associated
with class 1 (“good prognosis”) and 34 associated with class 2 (“poor prognosis”);
see §5. For a particular pair (¢,j) of genes we have identified, the 78 profiles are
labeled according to the above 2 x 2 contingency table. These data lead to the
probability estimates p;;(1) = 8/44 and p;;(2) = 30/34, which results in the score
Ajj =|& — 39 = .7005. Since p;;(1) < p;;(2), the classifier based on this gene pair
votes for class 1 for a profile with X; > X; and for class 2 otherwise.

discriminating pairs in which at most one gene is itself differentially expressed. We
therefore adopt a more straightforward method based on direct search: We estimate
A;; for every distinct pair (i, ) and apply a selection rule based on the magnitude
of A;;. An example of such a decision rule is to rank the scores A;; from largest to
smallest and select all pairs achieving the top score.

(An indirect approach to scoring pairs can be found in [3], where feature selection
based on gene pairs is investigated in the context of profile classification using linear
discriminant analysis and nearest-neighbors. Rank statistics are not considered and,
in particular, the expression levels within a pair are not compared.)

2.3 Classification

Pair selection results in a family P of distinguished pairs. For the sample sizes in
the data sets we have treated, which range from n = 49 to n = 102, there are only
one to three pairs which achieve the top score.

Any standard classification algorithm may then be implemented using P as
input. We are interested in algorithms for which classification decisions have a
simple interpretation. Voting is an example of such a decision algorithm, where
individual votes are driven by maximum likelihood. In this method, given a new
expression profile X, an individual pair (¢, j) in P votes for the class for which the
observed ordering between X; and X; is more likely; see the example in Table 1.
That is, if we observe X; < X; in a new profile, then pair (i, ) votes for class 1
if p;;(1) > pi;(2) and votes for class 2 otherwise. The class with the most votes
is chosen. We refer to the resulting classifier as the top scoring pair(s) classifier,
henceforth denoted TSP.

It is noteworthy that for classification based on a single gene pair, the sum of
misclassification probabilities over the two classes can be expressed as 1 —A;;, which
provides a natural justification for score maximization.

The procedure of tallying individual votes, while attractive from the point of
view of simplicity [9], can also be derived as a maximum likelihood rule under the
simplifying assumptions that (i) individual comparisons are conditionally indepen-
dent given the class, and (ii) for some p we have either p;;(c) = p or p;j(c) =1—p
for all (i,7) € P and both classes ¢ =1, 2.



3 Estimation of Error and Tests of Significance

In validating our results, there are two paramount issues: unbiased estimates of
the generalization error and tests of significance for both the top score and the
estimated classification rate.

3.1 Estimation of Error

In estimating the (generalization) error rate of the T'S P classifier, gene pair selection
was performed within the cross-validation loop. With n samples and (leave-one-
out) cross-validation (CV), this means choosing n separate subsets P, one for each
profile “held out” during training, then classifying that profile. (Other methods
of estimating the error rate could, and perhaps should, be considered; see §6.) In
particular, both the actual top-score, as well as the set of pairs which achieve it,
may vary with the sample left out. The estimated prediction rate is then 1 —e/n
where e € {1, ...,n} is the number of errors observed in the cross-validation.

For our procedure there are no parameters to select inside the CV loop. For other
procedures that do require parameters, e.g., k-nearest neighbors, random forests
and support vector machines, the estimated prediction rates may be severely biased
if performance is sensitive to these parameters and they are not properly cross-
validated (using an inner CV loop to choose parameter values) [8, 19, 25]. The
TSP classifier avoids this source of bias.

3.2 Tests of Significance

Typically, the expression levels of thousands of genes are measured in a given study,
and hence there is an enormous number of possible pairs of genes, even hundreds
of millions (see e.g., the breast cancer prognosis study in §5). Naturally, the issue
of over-fitting arises — finding high scores and (seemingly) discriminating pairs of
genes due merely to chance. There are several ways to test for “significance.” One
is the cross-validation itself: When a sample is left out, if a high-scoring pair of
genes is due entirely to chance, then it will correctly classify the sample left out
with probability one-half. Consequently, high performance cannot be due to chance
alone; see the discussion in [12].

In addition, a permutation analysis provides another important test of signifi-
cance, both for the score and for the estimated rate. For any given study, artificial
data sets can be constructed by randomly permuting the class labels, hence main-
taining the sample sizes ny and no of the two classes. The resulting top scores and
cross-validated error rates are then indicative of those obtained when attempting to
classify based on profile labels which cannot be predicted from the expression values
while maintaining the overall statistical dependency structure among the genes.

In each of our experiments, the top score was computed for 1000 random assign-
ments of the class labels to the n samples (preserving class sample sizes). Hence
in each study a p-value can be associated with the top score on the actual data by
taking the fraction of permuted data sets in which a score at least as large is ob-
tained. This p-value can be interpreted as the probability of observing such a large
score under the null hypothesis that the pairs are non-informative for classification.
Similarly, the prediction rate of the T'S P classifier itself can be estimated as in §3.1



Problem Score | Genbank ID 1 t-stat 1 | Genbank ID 2 t-stat 2
Breast Nodal 0.838 X03453 4.39 X82634 2.25
Prostate 0.902 M84526 7.46 Mb55914 4.13
Leukemia 0.979 L11373 1.99 X95735 10.92
Leukemia 0.979 D&6976 1.60 X95735 10.92
Leukemia 0.979 J05243 7.87 M23197 6.62
Breast Prognosis | 0.701 AW134553 2.55 NM_003963 1.70

Gene descriptions

X03453 Bacteriophage P1 cre gene for recombinase protein
X82634 Homo sapiens mRNA for hair keratin acidic 3-II
M84526 Human adipsin/complement factor D mRNA, complete cds
M55914 Homo sapiens c-myc binding protein (MBP-1) mRNA, complete cds
L11373 Human protocadherin 43 mRNA, complete cds for abbreviated PC43
X95735 Homo sapiens mRNA for zyxin
J05243 Human nonerythroid alpha-spectrin (SPTAN1) mRNA, complete cds
M23197 Human differentiation antigen (CD33) mRNA, complete cds
D86976 Human mRNA for KIAA0223 gene, partial cds

AW134553 MOBI1, Mps One Binder kinase activator-like 2C

NM_003963 Homo sapiens transmembrane 4 superfamily member 5 (TM4SF5), mRNA

Table 2: The top scoring pair(s) for each study, together with the top score and
individual t-statistics.

above for each random permutation and a p-value can therefore be associated with
the rate on the correctly labeled data.

4 Experiments with Breast, Leukemia
and Prostate Cancer Data

The T'SP classifier was initially evaluated on three class prediction problems: Pre-
dicting the status of lymph nodes in patients with breast tumors (Breast Nodal
study; [25]); Classifying profiles into leukemia subtypes (Leukemia study; [13]);
Distinguishing prostate tumors from normal profiles (Prostate study; [20]). De-
tails involving these data (references, chips, samples sizes, web addresses, etc.) can
be found in [12] and in Table 3.

4.1 Top-Scoring Pairs

There are three top-scoring pairs for the Leukemia data and only one for the
Breast Nodal and Prostate data; the actual top scores, and corresponding gene
pairs, are identified in Table 2, together with their individual t-statistics. Some of
these genes would not be regarded as “differentially regulated” on the basis of their
individual t-statistics. Notice that the same gene may appear in more than one
pair.

No score among the 1000 permutation trials came near the top score actually
observed on either the Leukemia or Prostate data, and hence the estimated p-
values are virtually zero. For the Breast Nodal data the estimated p-value of the
top score is 0.001.



Problem | G | n | TSP (# genes) | Previous Results (# genes)

Breast Nodal | 7129 | 49 79% (2) 41%-88% (10-4459)
Leukemia 7129 | 72 94% (5) 85%,95% (50)
Prostate 12600 | 102 95% (2) 86%-92% (4-256)

Table 3: Some comparisons of performance between the T'SP classifier and previ-
ously reported prediction rates: G is the total number of probes; n is the sample
size; and # genes is number of genes used by the classifier.

4.2 Prediction Results

The estimated (correct) prediction rate of the T'SP classifier for the first three
studies is displayed in Table 3 along with other reported results for these data. All
TSP results are based on leave-one-out cross-validation. In predicting the status
of lymph nodes (affected or non-affected) in the Breast Nodal study, the esti-
mated classification rate of 79% corresponds to nine errors and three ties out of 49
cross-validation loops; random tie-breaking then results in 10.5 errors on average.
Estimated error rates for these data based on leave-one-out cross-validation using
a wide variety of common machine learning techniques are summarized in Chap-
ter 3 of [8] for varying numbers of pre-filtered genes: m = 10, 50, 100, 200, 500,
1000, and m = 7129. Most parameter choices are external to the cross-validation
in estimating the error rates listed in [8]; see the comprehensive discussion there.
These external parameters include those which are method-specific as well as the
choice of the number of genes that are pre-filtered. For example, in the case of
support vector machines, there are 48 experiments presented in [8], corresponding
to choosing the kernel, the penalty, the filtering method and the number genes to
be filtered; the number of errors varies according to the protocol (e.g., 7— 11 errors
with m = 10 genes, 12 — 18 errors with m = 50 genes, etc.). All of these methods
are more complex than the T'S P classifier and relatively few parameter choices yield
better results. Moreover, it is not clear that even these differences would remain
after proper cross-validation of the other methods.

For the Leukemia study, the two stated rates, 85% and 95%, refer, respectively,
to validation on the test set and leave-one-out cross-validation on the training set
[13]. For the Prostate study [20] a k-nearest neighbor classifier was applied to m
genes (for selected values of m from 1 to 256) identified by measuring differential
expression between normal and tumor samples using a variation of the signal-to-
noise statistic [13]. For each m, prediction error was estimated using leave-one-out
cross-validation; the range 86% — 92% corresponds to 4 < m < 256. The parameter
choices are not cross-validated, and hence the best estimated prediction rates are
biased upwards.

Additional information about each comparison can be found in [12], including a
discussion of the biological purpose and significance of the genes in the top-scoring
pairs. For example, in the Prostate study, one of the genes in the top scoring
pair using the T'SP classifier was adipsin, which was identified as one of the top
50 marker genes in Singh et al.[20] but the other gene in the pair, c-myc, was not.
Nonetheless, the joint behavior of c-myc and adipsin is highly discriminative of
non-tumor versus prostate tumor samples, yielding a prediction rate of 95% (with
p < 0.001).



5 Experiments with Breast Cancer Prognosis Data

In [24], the authors attempt to utilize the expressions values of 24,481 genes and
ESTs obtained from ¢cDNA microarrays in order to predict the existence of future
metastases among patients with primary breast tumors but who do not have tumor
cells in local lymph nodes at the time of diagnosis. Among n = 78 patients in the
study, there are ny = 44 patients who remained disease-free for at least five years
(“good prognosis group”) and n; = 34 patients who developed distant metastases
within five years (“poor prognosis group”). The objective is to identify profile
signatures which predict, at the time of diagnosis, to which class the tumor belongs.

5.1 Previous Results

The authors in [24] develop a “prognosis classifier” constructed by: i) gene screening
to reduce the number of genes to around 5000; ii) selection of 231 (“reporter”) genes
among these 5000 based on computing a correlation coefficient of expression with
disease outcome; iii) rank ordering these 231 correlations and successively adding
small groups to a correlation-based classifier, measuring improvements by leave-one-
out CV. Finally, classification is based on correlating the expression profile of the
left-out sample based on seventy genes with those of the remaining samples. The
authors report an 83% classification rate (i.e., 13 errors out of 78 samples). However,
this rate was revised downward to 73% (21 errors) upon realizing that the initial
estimate of 83% was not properly cross-validated; for instance, the set of reporters
was not re-computed in each loop of the cross-validation (online supplement to [24]).

5.2 TSP Classifier

There are missing values for about half of the genes; for instance, one missing out of
78 for 8397 genes, two missing for 1826 genes, etc. (The treatment of missing data
is not discussed in [24].) We decided to use only the 13,547 genes for which there
are no missing values; another approach would have been to utilize all the data but
normalize the scores to account for differing sample sizes. As indicated in Table 1,
the top score on the whole training set is A = 0.7005 and there is only one pair
achieving this score (see the discussion below). Based on 1000 permutations of the
class labels, the estimated p-value of this score is p = 0.003; see Figure 1.

5.2.1 Biological Context

The pair of genes with the highest score is indicated in Table 2. The protein en-
coded by gene TM4SF5 is a cell-surface glycoprotein mediating signal transduction
events involved in the regulation of cell proliferation and motility. It may play a
role in uncontrolled growth of tumor cells, and is known to be over-expressed in
pancreatic as well as other cancers [16]. Probe AW134553 is a member of Unigene
cluster Hs.97927 encoding the human the Mps one binder kinase activator-like 2C
(MOBKL2C, MOB1) protein. In yeast, MOB1 is a protein kinase member of the
mitotic exit network involved in spindle body duplication and mitotic checkpoint
regulation via interactions with Dbf2 and Cdcl5 [15].
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Figure 1: Histograms of top scores (left panel) and classification rates (right panel)
for 1,000 randomly relabeled gene expression profiles from the breast cancer data.
For the actual data, the top score obtained is .7005 and the classification rate is
84.0%.

5.2.2 Prediction Rate

As before, and as in [24], the prediction rate of the T'SP classifier was estimated
by leave-one-out CV; of course the top-scoring pairs will in general depend on the
sample left out. The TSP classifier makes 12 errors and there is one tie (i.e.,
in one loop, half the top-scoring pairs vote for class 1 and half vote for class 2).
Assuming a random vote in the case of ties results in a predicted classification
rate of 65.5/78 = 84%, with p = 0.012 (the fraction of permutations in which the
TSP classifier achieved a rate at least this high). In Figure 1 we also show the
histogram of the classification rates (estimated by leave-one-out CV) for the 1000
permutations.

5.2.3 Computational Complexity

Computing the TSP classifier requires O(G?) operations since this requires comput-
ing a score for every gene pair. For the breast cancer data, this calculation took 67
CPU seconds using an itanium2 1.3 GHz processor. A naive approach to computa-
tion of the classification rate by leave-one-out CV would require n times the effort
of computing the TSP. (Recall that n is the number of sample profiles.) However,
this factor can be reduced to approximately two by using a preliminary calculation
in which a list of gene pairs is identified that must contain any top scoring pair of
genes in all of the CV iterations. This list typically represents a very small fraction
of all gene pairs. (In fact, for the breast cancer data this list contains only three
pairs.) As a consequence, the remaining computational effort in calculating the



Method | 1 gene | 11 genes | 49 genes | 86 genes | 184 genes
DLDA 21 34 29 28 29
1-NN 28 37 27 25 26
3-NN 27 34 30 23 23
SVM 21 33 23 25 31

Table 4: The number of errors (out of 78) in leave-one-out CV with three common
methods (see text) for varying numbers of genes corresponding to screening based
on five thresholds (see text) on the t-statistics. The T'SP classifier uses two genes
and makes 12.5 errors.

TSP inside the CV loops is negligible. For the breast cancer data, leave-one-out
CV took 132 CPU seconds using the above-mentioned processor.

5.3 Benchmarks

We benchmark our results and those in [24] against two well-known software pack-
ages for classification from microarray data:

e BRB Array Tools (Simon, R. and Lam, A.,
hitp : [ /linus.nci.nih.gov/ BRB — ArrayT ools.html); and

o Prediction Analysis of Microarrays (PAM) [22]

Both packages perform gene selection internally to the CV; BRB Array Tools uses
leave-one-out CV whereas PAM performs 10-fold CV in order to estimate the gen-
eralization error. In both cases missing data were treated the same way as for the
TSP classifier. (Rank-based versions of all these methods could be considered, but
only the standard versions were implemented.)

5.3.1 BRB Array Tools

BRB Array Tools offers a choice of several classification techniques. We chose
three common methods: k-Nearest Neighbors (k-NN), Diagonal Linear Discrimi-
nant Analysis (DLDA) and Support Vector Machines (SVM). Possible values of k
for k-NN are k = 1 and k = 3 and the distance metric is the Euclidean distance. The
SVM kernel is linear and we kept the default value of 1 for the ”cost” parameter.
For each classification technique, gene selection is done via the t-test, whose signif-
icance threshold is set by the user. We chose five values for this threshold : 1075,
1074, 5 x 1074, 2.5 x 1073, 5 x 1073, yielding a selection of respectively 1, 11, 49, 86
and 184 genes on the whole tumor set (the number of genes selected during each
step of the CV being similar to those numbers). The results are shown in Table 4;
the values in the table are the number of leave-one-out CV errors determined by
BRB Array Tools.

Note that these figures are likely to be optimistic estimates of future perfor-
mance. Indeed, as mentioned in §3.1, unbiased estimation would require two nested
loops of cross-validation, with the ”optimal” number of genes (and value of k for
k-NN) being chosen internally to the first (inner) loop of CV and the performance
being computed during the second (outer) loop of CV [8]. Even so, the best result
in Table 4 is 21 errors, obtained by both DLDA and SVM using one gene.

10



5.3.2 PAM

PAM [22) is a variant of DLDA. There are two differences. The first is the addition
of a small positive constant ("fudge factor”) to the denominator of the expression
for the distance from the observation to the class mean. The second is the use
of ”shrunken” rather than ordinary centroids as prototypes for each class. The
fudge factor guards against the possibility of spurious large distances for genes with
low expression values. The shrunken centroids and consequent ”soft thresholding”
eliminate uninformative genes from the prediction rule as the shrinkage parameter
("threshold”) is increased; this has performed better than “hard thresholding” (as
is the case for the t-test) in other settings [7]. The CV performance is provided
as a function of the threshold (or, equivalently, of the number of genes used in the
classifier), allowing one to easily find the ”optimal” value of the threshold (or of the
number of genes).

The estimated prediction rate is fairly constant over all thresholds (equivalently,
from one gene to all 13,547 genes). The best result is 27 errors (65% prediction
accuracy) with 15 genes.

5.3.3 Notes

We also ran both BRB Array Tools and PAM with missing data imputed with
PAM’s k-NN imputer (the default value of k = 10 was kept), which has been shown
to be an excellent imputation technique [23]. The results are very similar. The best
result among DLDA, k-NN and SVM is still 21 errors, obtained with 3-NN using
115 genes, and the optimal performance of PAM is again 27 errors, obtained with
21 genes.

Finally, it is somewhat surprising that none of the classifiers in the benchmark
experiment performs better than the classifier in [24]. A possible explanation is that
since the initial selection of around 5000 genes is external to the cross-validation,
the prediction rate in (the supplement to) [24] remains biased.

6 Discussion

We have introduced a new classification methodology for microarray data based
entirely on pairwise comparison of relative gene expression levels. Basing predic-
tion on ratios of concentrations provides a natural link with biochemical activity.
In fact, this link may help to explain why the T'SP classifier appears to be more
accurate than many other classifiers while at the same time using fewer genes. More-
over, ratios of concentrations will become more biologically meaningful when mRNA
abundance is replaced by actual protein expression data. Indeed, the full poten-
tial of this method may not be realized until high-throughput protein comparisons
become practical.

Besides the advantage of invariance to normalization, concrete hypotheses about
the predictive significance of specific mRNA comparisons are generated naturally
by the method, and follow-up studies could be focused on the corresponding list of
gene pairs. An example was provided in the case of detecting prostate cancer.

We have chosen leave-one-out (“n-fold”) CV to estimate the error rate of the
TSP classifier in order to provide an “apples-to-apples” comparison with the other

11



work we cite. In addition, this method is well-known to have low bias. On the
other hand, methods such as k-fold CV and bootstrap resampling techniques have
been asserted to have smaller variance (see, e.g., [10, 11]), be more appropriate for
microarray analysis [5], and be particularly well-suited to classifiers which exhibit
various forms of “instability” (see below). For instance, with 10-fold CV, the esti-
mated error rates should be unbiased for a training set of size .9n (rather than of
size n) although the variance (sensitivity to the training set) may be reduced; of
course, performance is expected to degrade somewhat due to the smaller number of
training samples for constructing the classifier. These tradeoffs will be investigated
in future work.

We have focused our study on the T'SP classifier in which predictions are based
entirely on the top-scoring pairs. In most of the cases we have encountered there
is in fact a unique top-scoring pair. However, there may be many pairs of genes
whose relative expression values is informative. Moreover, the top-scoring pair may
change when the training data is even slightly perturbed by adding or deleting
a few samples. One avenue of future work is to find a more stable, comparison-
based signature than the top-scoring pair or pairs. For example, one may also
consider a slightly more complex k — T'SP classifier based on all pairs achieving
the k best scores. In this case, k is a parameter that should be estimated using
cross-validation, hence requiring a double loop of cross-validation to estimate the
generalization error. An investigation of the k—T'S P classifier, and other extensions
of the method introduced here, will be reported elsewhere.

With somewhat larger samples, say several hundreds, the induction of modest-
depth decision trees, based on successive entropy reduction and using only com-
parison questions, becomes feasible, thereby maintaining results which are both
easy to interpret and invariant to normalization. The corresponding decision rules
would then be based on more complex mRNA comparisons involving more than
two genes. The methodology extends almost without modification to more complex
and heterogeneous data sets, for example consisting of mixed mRNA and protein
abundances.

One could also envision modeling the statistical dependency structure among
families of genes and proteins, for example regulatory pathways, based on observed
order statistics. With very small amounts of data, it may only be possible to col-
lect reliable estimates of pairwise comparisons among expression levels. More data
could lead to estimating the order statistics of triplets, and so forth. This provides
a natural, hierarchical family of models which can be adapted to the amount of
data.
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