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Abstract. We propose a relevance feedback system for retrieving a men-
tal face picture from a large image database. This scenario differs from
standard image retrieval since the target image exists only in the mind
of the user, who responds to a sequence of machine-generated queries
designed to display the person in mind as quickly as possible. At each
iteration the user declares which of several displayed faces is “closest” to
his target. The central limiting factor is the “semantic gap” between the
standard intensity-based features which index the images in the database
and the higher-level representation in the mind of the user which drives
his answers. We explore a Bayesian, information-theoretic framework for
choosing which images to display and for modeling the response of the
user. The challenge is to account for psycho-visual factors and sources of
variability in human decision-making. We present experiments with real
users which illustrate and validate the proposed algorithms.
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1 Introduction

Traditional image retrieval is based on “query-by-example”: starting from an ac-
tual image, the objective is to find the images in the database which are visually
similar to the query image. Striking results are obtained in special domains, e.g.,
in comparing paintings, plants and landscapes using the IKONA system [1].

However, in many cases of interest there is no physical example to serve as
the query image [2]. Instead, knowledge about the target is based entirely on
the subjective impressions and opinions of the user. In other words, the stan-
dard query image is replaced by a “mental image”. To be concrete, we shall
concentrate throughout on face images, although all the algorithms we develop
could be applied in other domains, for instance to images of clothes, houses,
funitures or paintings. Mental face retrieval has extensive applications in secu-
rity, e-business, web-based browsing and other areas. Here, as the realization
of a study conducted jointly with the SAGEM group, we propose a system for
retrieving a mental face image using Bayesian inference and relevance feedback.
It is based on an interactive process designed to incrementally obtain knowledge
about the target from the responses of the user to a series of multiple choice
questions. The objective is to minimize the number of iterations until a face is
displayed whose identity corresponds to the mental image.
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Thus relevance feedback refers to a series of queries and answers. The query
is simply a set of displayed images from the database. The answer is the feedback
provided by the user. Usually, the opinions or impressions of the user concern-
ing both his target and the displayed images are of high-level, semantic nature,
and hence “mental matching” involves human memory, perception and opinions.
On the other hand, the representation of the images in the database is gener-
ally based on low-level signatures rather than semantic content. This “semantic
gap” greatly complicates the task. Indeed the face recognition problem, which
is arguably easier, remains largely unsolved, at least with large databases.

Still, if the display and answer models are constructed to explicitly address
the issue of coherence, it is possible to incrementally obtain knowledge about
the target image. The accumulation of information is represented by an evolving
probability distribution over the database, whose entropy is hopefully diminish-
ing (although not monotonically) as information is acquired from the answers.
This process of alternating between query and answer is iterated until the user
recognizes one of the displayed images as his target, at which point the search ter-
minates. The two primary challenges in mental picture retrieval are then deciding
which images to display at each iteration (the “display model”) and account-
ing for the difference between mental matching and signature-based matching
(i.e., between mental and feature-based metrics) in designing the conditional
probability distribution for the answers given the target (the “answer model”).

In our framework, both the target and answers to queries are treated as
random variables; the probability distribution of the target evolves over time
based on the accumulated evidence from the user’s responses. A natural choice
for the images to display at each iteration is then the set which maximizes the
mutual information between the target and response given all previous answers.
As this optimization problem is intractable, a heuristic solution is proposed based
on an “ideal” answer model which puts the user and system in synchrony. In
addition, in order to find image representations which cohere as much as possible
with human decision making, we compare several traditional face recognition
signatures. Based on this analysis as well as data collected from human responses,
in particular declaring which among a set of displayed images is “closest” to
a given target, an answer model is designed for a comparative response. The
feasibility of the whole system is demonstrated by estimating mean search times
and other summary statistics from mental retrieval experiments with real users.

Whereas there has been considerable work done on face retrieval in the stan-
dard setting of query-by-example [6, 4], little has been reported in the case of
mental images. Navarret et al. proposed an algorithm based on self- organizing
maps [8]; see also the work on “retrieval of ambiguous target” in [9]. Of course,
there are many articles on relevance feedback [13], however, most of them in-
volve “category search”, which is different from “target search” in the case of
mental face retrieval. In our view, the benchmark work on “target search” for
mental images is Cox et al [3]; see also the model proposed by Geman and Mo-
quet [5] for the toy application of mental polygon retrieval. By concentrating on
the interactive process and specializing to target search and pairwise compari-
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son tests, the authors in these studies were able to develop ties with Bayesian
inference and information theory. However, the answer model in [3], basically
a blurring of the actual metric used by the system in comparing two images,
is not sufficiently powerful to deal with face retrieval. Moreover, pairwise com-
parison search is not practical with large image databases. We believe our work
constitutes the first comprehensive study of mental face retrieval, both in terms
of mathematical foundations and experiments with real users.

The remainder of the paper is organized as follows. The formulation of the
problem in terms of Bayesian relevance feedback is described in Section 2. The
answer model and display model are explained in detail in Sections 3 and 4
respectively. In Section 5, we discuss signature extraction and analyze the co-
herence issue. Experimental results are presented in Section 6.

2 Bayesian Relevance Feedback Model

In the framework we propose, mental image retrieval will depend on solving two
difficult tasks:

– A Modeling Problem: Discovering answer models which match human
behavior;

– An Optimization Problem: Discovering approximations to the optimal
query.

Suppose there are N images in the database S, say I1, ..., IN . For simplicity, we
will identify S with the index set {1, 2, ..., N}. One image in the database, Y , is
the “target”, i.e., the variation on the mental picture assumed to belong S. In
the stochastic formulation, Y is a random variable with some initial distribution

p0(k) = P (Y = k), k ∈ S.

Information about Y is collected from a series of queries. Each query involves
two quantities: a subset D ⊂ S of n displayed images and the response of the
user, denoted by XD and taking values in a set A. Obviously n � N ; the choices
for n and A are important issues which will be discussed in the following sections.

The feedback from the user up to time (or iteration) t = 1, 2, ...,, is then

Bt =

t
⋂

i=1

{XDi
= xi}

where Di is the display at time i and xi is the user’s response. This is the history
of queries and answers during the first t iterations.

We wish to compute and update the posterior distribution,

pt(k) = P (Y = k|Bt), k ∈ S,

the probability that image k is the target after t iterations. First, however, we
must specify the joint distribution of Y and the observations {XD1

, ..., XDt
}.
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The posterior pt is then computed in the usual way. As in previous work, we are
going to assume the answers to the queries are conditionally independent given
the target Y . This is not an unreasonable assumption in practice. It follows that

P (Bt|Y = k) =
t

∏

i=1

P (XDi
= xi|Y = k).

The conditional response distribution, P (XD = x|Y = k) is what we call the
“answer model.”

Updating the posterior is now easy:

pt+1(k) = P (Y = k|Bt+1)

= P (Y = k|Bt, XDt+1
= xt+1)

∝ pt(k)P (XDt+1
= xt+1|Y = k)

In other words, updating pt(k) merely involves multiplying by the new evidence
P (XDt+1

= xt+1|Y = k) and re-normalizing.

3 Answer Model

Designing P (XD = x|Y = k) involves two primary decisions: determining the
set of possible responses x ∈ A and capturing the behavior of a user who has
image k in mind and is presented with the images in D and asked to respond.
This specification inevitably relies on the metric in the signature space, denoted
by d. More details about this metric is introduced in Section 5.

There are many possible choices for A. In all cases, the target is identified
if present, so let us assume that Y /∈ D. One could ask the user to supply a
rather precise measure of the degree of similarity between each displayed image
and his target. Somewhat less demanding, one could solicit a rough label for
each displayed image, such as “relevant” or “not relevant”. We have adopted
a still simpler scheme in which the user is simply asked to select the image
which is “closest” to his target. The price for simplicity is of course a decrease in
the amount of information conveyed, and hence in the reduction of uncertainty
about Y . Nonetheless, in our experiments, this model proved to be the most
practical, both mathematically and in terms of user psychology. It does not
unduly burden the user with complex decision-making, nor require any specific
knowledge of image representation, and it provides a natural way of bringing the
stored metrics into play. To make this precise, assume D = {s1, ..., sn} and set

A = {1, ...n, n + 1, ..., 2n} (1)

For i ∈ {1, ..., n}, the response XD = i signifies that image si is not the target
but, in the opinion of the user, is the one closest to his target. Response i ∈
{n + 1, ..., 2n} signifies that image si−n is the target.
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By definition of such comparative answer, if k ∈ D, we have

P (XD = i|Y = k) =

{

1 if k = si−n

0 otherwise

Otherwise, i.e., if k /∈ D, then for i ∈ {1, ..., n}:

P (XD = i|Y = k) =
φ(d(si, k))

∑

sj∈D

φ(d(sj , k))
(2)

Ideally, the closer the image si ∈ D is to k in the stored metric, the more likely
the user is to choose it. Hence, we take φ to be monotonically decreasing. In our
experiments, we adopt a parametric form for φ and learn the parameters from
real data (collected user responses) by maximum likelihood estimation.

4 Display Model

One straightforward solution to determine Dt, the n images displayed at iteration
t, is to pick the n images which are most likely under the posterior distribution
pt. However, this simple strategy is far from optimal in terms of minimizing the
average search time (our ultimate goal) except near the end of efficient searches,
when pt is highly concentrated. Instead, as in other work, we adopt the powerful
(and time-independent) strategy of choosing Dt+1 to minimize the uncertainty
of the target given the search history Bt and new answer XDt+1

, measuring
uncertainty by entropy:

Dt+1 = arg min
D⊂S

H(Y |Bt, XD) (3)

Since the entropy H(Y |Bt) is independent of D, Eqn.(3) is equivalent to maxi-
mizing the conditional mutual information between Y and XD given Bt:

Dt+1 = arg max
D⊂S

I(Y ; XD|Bt) (4)

The mutual information is then computed relative to the joint distribution de-
termined by the answer model and the current posterior on the target.

4.1 Heuristic Solution

The minimization in Eqn.(3) is, unfortunately, a virtually intractable combina-
torial optimization problem since there are

(

N
n

)

choices for D ⊂ S. (Discarding
images already displayed makes little difference.) The algorithm we use is based
on an approximation to the corresponding optimization problem resulting from
the choice of an ideal answer model under which the user selects the displayed
image actually closest to his target using the system metric (or of course selects
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the target itself if present). Since Y determines XD+1, it is easy to see that Eqn.
(3) is equivalent

Dt+1 = argmax
D⊂S

H(XD|Bt) (5)

However, there is a natural heuristic for this combinatorial optimization problem.
Roughly speaking, since entropy is maximized at the uniform distribution,

and ignoring the case in which the target belongs to D, we want to choose n
images, call them {s1, ..., sn}, such that the Voronoi partition has cells of almost
equal mass under the posterior. A sequential, heuristic solution is then given by
the following algorithm:

1. The candidate set C1 for s1 consists of all images not previously displayed
through iteration t.

2. Select s1 to be the image k ∈ C1 which maximizes pt(k).
3. Order the images in C1 according to their distance to s1. Add these one-by-

one to a cluster initialized by {s1} until the mass of the cluster under pt

reaches 1
n
.

4. Define the candidate set C2 for choosing s2, by removing the cluster from C1.
5. Select s2 to be the image k ∈ C2 which maximizes pt(k).
6. Divide all the images in C1 into two groups: those closest to s1 and those

closest to s2. Order the distances in the first group (respectively, second
group) according to their distance to s1 (resp. s2) and repeat the agglomera-
tion procedure in step 3 relative to both s1 and s2. This results two clusters
“centered around” s1 and s2, each with mass approximately 1

n
.

7. Continue in this way until {s1, ..., sn} are chosen.

Although there is no guarantee to maximize entropy in Eqn (5), this heuristic
solution is fast, simple and achieves good performance in practice.

5 Signatures, Metrics and Coherence

Given our emphasis on retrieving mental images of faces, it would seem natural
to use signatures developed for face recognition and face retrieval with query-by-
example. As a result, we have analyzed several subspace-based signatures applied
in these areas, such as principle component analysis (PCA) [11], Fisher’s dis-
criminant analysis (FDA) [10], and the kernel versions of PCA (KPCA) [12]
and FDA (KFDA) [7]. It should be emphasized however, that in face recog-
nition and retrieval, the target image is available and hence its signature can
be computed and directly compared with the signatures of other stored images.
In particular, there is no guarantee that effective signatures for face recognition
will also prove useful in mental retrieval.

We adopt the L1 distance (Performance with L2 is roughly the same) with
normalization by size of database and order of value in database as our metric.
One reason for the normalization is that standard signatures of the images in
S are sparsely scattered in a high-dimensional Euclidean space and there is
enormous variability among the distances between image pairs. Normalizing the
distance using the order statistics ameliorates this problem.
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We investigated the coherence between mental matching and metric-based
matching by collecting responses from various individuals. All the experiments in
this paper utilize subsets of the FERET database. Since the majority of people
in the FERET database are Caucasian, and since the response of most people
is heavily biased by semantics, we used the FERET(SB) (see Table 1) in the
coherence experiment. In FERET(SB), the distribution of ethnic (Asian, Black
and Caucasian) and gender categories (female and male) is roughly uniform.
Each data item consists of a triple (Y,D, XD) corresponding to a target, set of

Table 1. Face databases used in experiments

NAME #Subjects #Images Composition

FERET(A) 1199 1199 All FERET images

FERET(C) 808 808 Caucasian subset

FERET(SB) 512 512 Semantically balanced subset

FERET(W) 327 327 Caucasian female subset

FERET(SB+F) 531 531 FERET(SB)+ 19 extra (familiar) faces

displayed images and user response. The targets were sampled at random from S
and the number of displayed images is set to n = 8. (Using many fewer or many
more has adverse consequences with real users.) The answers are comparative, as
described in Section 3. Nine individuals (in the INRIA labs) produced a total of
989 data items (records). Statistics were collected on the rank of the user’s choice
in terms of the L1 distance between each display and the target. An example
experiment is shown in Fig.1, which compares PCA and KFDA under the L1

metric; both the density of rank and its cumulative distribution are shown. These
two signatures perform about the same. Neither can be said to be highly coherent
with mental matching as the probability that the user selects the closest image is
only roughly 0.2. Nonetheless, reasonable search times are obtained; see Section
6. Similar results are observed in other signature spaces. Henceforth, we fix our
distance to be the L1 metric on the KFDA image representation.

6 Experiments in Relevance Feedback

The web interface in the experiments is shown in Fig.2. Let T denote the num-
ber of iterations (query/response) until the target appears among the displayed
images. Given M tests (full searches), we estimate E(T ), the mean of T , and
P (T ≤ t), the (cumulative) distribution of T by their empirical statistics. That

is, if the M tests results in search times T1, ..., TM , then E(T ) = 1
M

M
∑

m=1
Tm

and P (T ≤ t) = #{1≤m≤M |Tm≤t}
M

. Evidently, we seek small values of E(T ) and
cumulative distributions P (T ≤ t) which climb as fast as possible.
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Fig. 1. Results comparing PCA and KFDA. Left: The estimated probability that the
user selects the m’th closest image to his target according to the distance in signature
space; Right: The cumulative distribution function.

Experiment I: Influence of the Answer Model

We designed answer models with varying degrees of “noise” in the sense
of how well decisions cohere with the actual metric on signatures. For answer
model defined in Eqn.(2), synchronization is controlled by the function φ(d)
where d = d(si, Y ), the distance between the “i’th” displayed image and the ac-
tual target Y . The more rapidly φ(d) decreases (as d increases) the more likely is
the user’s answer to cohere with the signature metric. We did simulations with
four answer models, meaning the answers are generated by sampling from the
model. The response of the “ideal user” is always perfectly coherent with metric,
i.e., P (XD = i|Y = k) = 1 if d(si, k) < d(sj , k) for all si, sj ∈ D, i 6= j. This
represents the optimal performance obtainable. The other extreme is a random
response (φ(d) ≡ const); every displayed image is equally likely to be chosen
regardless of its distance to the target. Two cases in between, and far more re-
alistic, are φ(d) = 1

d
and φ(d) = 1 − d; the former is evidently more coherent

than the latter. One simulation on FERET(A) (see Table 1) with M = 100 is
shown in Fig.3. In addition to the four (estimated) distribution function, the
(estimated) mean search time is listed in the legend box. Clearly the degree of
coherence with the metric on signatures characterizes the performance.

Experiment II: Sensitivity to the Size of the Database

To measure the effect of N = |S|, we used databases of increasing size:
FERET(W) (N = 327), FERET(SB) (N = 512), FERET(C) (N = 808) and
FERET(A) (N = 1199)(see Table 1). The curve in Fig.4 shows the variation of
E(T ) with N . The average search time grows slowly with N , roughly logarith-
mically.

Experiment III: Performance with Real Users

Tests with real users and a standard research database such as FERET is
problematic since the user is not familiar with the people represented in the
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database. Of course one can select an image at random and ask the user to
“memorize it” for few seconds, but this does not provide for a realistic scenario.
Instead, we add images of the faces of familiar people to the database and se-
lect these as the targets for our experiments with mental image retrieval. The
results shown in Fig.5 are based on M = 78 complete searches conducted by 22
INRIA researchers using the FERET(SB+F) database (see Table 1). For com-
parison, we show a simulation under the same experimental setting (i.e., same
answer and display models) as well as the distribution corresponding to random
display. In this case, it is easy to see that the cumulative distribution is linear,

P (T ≤ t) = t×n
N

, and the E(T ) = Tmax(1+Tmax)n
2N

, where Tmax is the maxi-
mum number of iterations possible. The answer model uses a φ-function with
the free parameters estimated by maximum likelihood. Obviously, the proposed
model far out-performs a random response. More importantly, the absolute per-
formance is quite reasonable, with a mean search time of E(T ) ≈ 14.7 iterations
and target recovery in fewer than ten iterations in approximately one-half the
searches. Fine-tuning the model, such as finding metrics and signatures more
coherent with mental matching, would likely result in further improvements.

Fig. 2. The interface for experiments
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7 Conclusions and Future Work

We have constructed a Bayesian model for mental face retrieval within the frame-
work of relevance feedback. In deciding which faces to display to the user to
match to the mental picture, a heuristic solution has been proposed based on
the maximization of mutual information. The design of the answer model is
motivated by the need to account for the variability in the responses of actual
users and the lack of a strong correlation between the basis for mental match-
ing and how images are compared using standard metrics on standard image
features. The performance of the system is validated in both simulations and in
experiments with real user tests, which demonstrate the feasibility of the pro-
posed model. Improvements are likely to result from metrics and features more
adapted to human decision making. Some degree of semantic annotation would
also increase efficiency, especially with much larger databases.
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