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Abstract

We search for universal characteristics of the microstructure of natural images. Our
data consist of a very large set of 3 x 3 patches randomly extracted from indoor and outdoor
grey level scenes. The patches are grouped into natural equivalence classes (“patterns”)
based on photometry, “complexity” and geometry. We analyze the stability of the pattern
statistics over image sets, resolutions and grey scale distortions. Important aspects of
the probability distribution of the patterns, e.g., the dominant masses, are stable in our
experiments. We also compare the statistics of the natural patch world with those of
artificially generated images; the results are consistent with recently proposed “scaling
laws” for the sizes of objects in natural images. These results suggest that well-chosen
patch labels might serve as elementary features in pattern recognition and other imaging
problems in which the fine structure of the grey level configurations is not essential, and
we sketch a computationally efficient way to carry this out using tree-structured vector
quantization.
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1 Introduction

We investigate the microstructure of natural grey scale images, focusing on 3 x 3 subim-
ages (“patches”) of ordinary photographs of indoor and outdoor 3D scenes - landscapes,
urban sights, portraits, etc. Our experiments are based on a huge collection of patches
randomly extracted from two databases. Our objective is to determine if there are statis-
tical characteristics of this microworld which are “universal” in the sense of being stable
across scenes types, resolutions, and other global image attributes.

One motivation for this work is finding stable, elementary features for image analysis.
Decisions about how the patches are grouped - what type of information is preserved
- are driven by applications to object recognition and other high-level vision problems.
Different objectives might lead to somewhat different coding schemes, say for fractal image
compression [13] in the spirit of the “archetype classification” in [4]. In [1] we coded 5 x 5
patches of binary images of handwritten digits. The basic idea was to vector quantize a
large random sample by examining just a few of the 25 pixels. The order in which the
pixels were observed was determined by maximizing the gain in information of each query.
The internal nodes of the resulting binary tree served as local features for recognition. We
began this study by wondering how this idea might be extended to greyscale images and
one such program is outlined based on tree-structured vector quantization.

We are also motivated by related work on the “statistics of natural images” [7],[14] and
on scale invariance in natural images [6],[8],[12], wherein evidence and explanations are
provided for universal scaling laws, for instance for the probability distribution of object
sizes. In fact, we compared microimage statistics for natural images with those generated
artificially from Poisson disk models, sampling the disk radii according to several different
densities. After adjusting for the amount of “background,” the statistics match surpris-
ingly well in the case of inverse cube laws, as discussed in [6]. There is also work similar
in spirit to ours about how edges and wavelets might “emerge” from series expansions
for small subimages and comparisons are drawn with biological operations in the primary
visual cortex ([2], [9]); in particular, work on Independent Component Analysis (ICA)
(see, e.g., [3]) characterizes edges as “the most statistically independent” image features.
A rather different characterization emerges from our study: Roughly speaking, edges are
“the most probable non-background” microimage configurations.

Suppose all grey level images are quantized to L values. Then there are L° different
patch types (grey level configurations). But these are useless as image features because
their frequencies are extremely low and unstable. Hence some form of grouping is un-
avoidable. Now from a purely information-theoretic point of view, code lengths should be
proportional to negative log frequencies, and the Huffman code achieves this by succes-
sively aggregating masses, starting with the rarest ones. However, grouping patches in this
way would be quite unnatural, at least in a perceptual sense, and certainly inefficient for
vision tasks. There is no reason the resulting classes would capture important invariances,
nor would the code length necessarily reflect actual computation.

Instead we group the patches into equivalence classes (“patterns”), first based on pho-
tometry, then a measure of complexity, and finally with respect to geometrical symmetries.
For example, at a coarse level it is natural to combine patches with similar grey levels at
each pixel, and to combine these into larger clusters under some form of rotational sym-



metry. Mathematically, this corresponds to an action of a symmetry group, whose orbits
are more statistically stable than individual elements. This results in a coding hierarchy
determined by invariance in addition to patch frequencies.

Experiments were performed in order to determine how the frequencies - and other
statistics - of the resulting patterns change from one image set or resolution to another.
Our main conclusion is that these “statistics” are very stable. For example, regarding the
binary Huffman code for the probability distribution of the dominant classes as a summary
statistic, we find that this tree does not change if all the images are downsampled, and
remains nearly the same from one data set to another.

2 Organization of the Paper

The first step is to factor out redundancy in photometry. Since our primary goal is image
interpretation (rather than restoration, enhancement, compression, etc.), we argue that
the essential information is preserved under rather coarse quantization. The details are in
Section 3. This results in 3 X 3 matrices assuming only a small number of integer values;
we refer to these as “patterns.”

Next, in Section 4, we identify equivalence classes of patterns of approximately equal
“complexity,” measured by the number of distinct values. Ideally, this mapping preserves
textures, flat regions, smooth boundaries, etc. Our experiments show that, in nearly all
natural scenes, the lowest complexity class (“background”) is by far the most probable.
Moreover, conditioned on non-background, one class of “moderate complexity” consis-
tently appears to absorb most of the remaining mass. In Section 5, we aggregate patterns
of this class based on pseudo-circular rotation and intensity inversion.

We then measure the stability of the statistics of the classes mentioned above. Data on
the frequencies of occurrence of the dominant classes obtained from two large databases is
presented in Section 6 and in Section 7 we compute a Huffman code for an approximation to
the distribution of the random variables naturally associated with the equivalence classes.
We compare statistics from one database to another, and with respect to downsampling
and photometric transformations, in Section 8. We also compare natural statistics with
those corresponding to artificial images in Section 9. Finally, computational issues are
discussed in Section 10 and some concluding remarks are made in Section 11.

3 Quantization

Let G ={0,..,L—1} and Q@ = {0, .., Lo—1}, Ly < L, be the original and quantized intensity
scales, respectively. The set of 3 X 3 matrices with entries in G (resp. @) is denoted M (G)

(resp. M(Q)). At minimum, quantization should preserve relative brightness and any such
map F : M(G) — M(Q) will be called a quantization. Thus, if v € M(G), then

ws <wt = (Fw)s < (Fw)y,

where s and ¢ denote pixels. Obviously any quantization F' defines an equivalence relation
on M(G); the equivalence classes are F~1(n),n € M(Q). We will refer to the elements of



M(Q) as “patterns.”

Example 1: Uniform Quantization. Some of our experiments are based on the stan-
dard quantization F,: G is partitioned into Ly intervals of length L/Ly and (F,w)s =1
(I € Q) if w, falls in interval [ 4+ 1. Generally, our original images have L = 256 grey levels
and we take Ly = 16. An example is provided in Figure 1; the left matrix is w € M(QG)
and the middle matrix is F,w € M(Q).

3740/41] - 0
38/80/62] —= |2 |5 |3 | —=
81| 60| 63 5133 2 1|1

Figure 1: Uniform quantization followed by factorization

Example 2: Alternate Quantization. We obtained a better coding starting with a
different scheme in which the new value given to pixel s depends on all the (nine) grey
levels in w rather than only ws. Assign the darkest pixel(s) the value 0, then assign
the next brightest pixel(s) the label 0 if the difference is less than L/Ly and the label 1
otherwise, and so forth. More precisely, suppose again L = 256 and Ly = 16, and label the
pixels s1, $2, ..., Sg to satisfy ws, < ws, < -+ < wg,. Put (Fpw)s, = 0. For i = 2,...,9, set
(Fow)s; = (Faw)s;_, if ws; —ws, , < 16 and set (F,w)s; = (Faw)s, , + 1 otherwise. Unlike
uniform quantization, if (F,w)s # (Fyw); then |ws — wy| > L/Ly. Figure 2 contrasts F,
with Fy; left to right the three matrices are w, F,w and F,w. More details comparing the
two schemes can be found in [10].

32 8 17 0 0 0 2 0 1
11 15 3 0 0 0 0 0 0
29 65 67 0 1 1 1 4 4

Figure 2: Comparison of the two quantization schemes. Left: Original grey levels; Middle:
Alternate; Right: Uniform.

4 Complexity

The number of distinct intensities in F(w) € M(Q) is a measure of the complexity of w.

Let z: M(Q) — Z def {0,1,...,8} denote this number minus one. We now consider only
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“dense” quantization schemes for which z is in fact the maximal value of each quantized
subimage, i.e., there are no “gaps” in the quantized intensity scale of any individual
subimage. The scheme F, has this property whereas F;, does not in general. Evidently,
any F' can be made to have this property simply by replacing the quantized values of
each subimage by their natural enumerations 0,..,z. We refer to this post-quantization
procedure as “factorization” and denote it by = : M(Q) — M(Q). For example, the
center matrix in Figure 1 is mapped to the righthand one. Obviously 7 o F' is another
quantization. In fact, another characterization of the equivalence relation “~” on M(Q)
determined by = is as follows. For 7,{ € M(Q):

ne~ (= <G <G Vst

def

Finally, notice that z remains well-defined on the quotient space M(Q) = M(Q)/ ~.
Henceforth we will assume 7 is incorporated into F'.

Clearly information is lost during quantization; given F', the original representation
of a monochrome image by a gray map is now irreversibly replaced by the values of
F computed for all (or for a large sample of) pixels. However, we will argue that, for
reasonable choices of F' and Ly, such as F = F, and Ly = 16, the gain in generality
and simplicity leads to stable microimage coding. Moreover, the amount of remaining
information is still extremely rich, hopefully sufficient for recognition and similar tasks.
Of course discerning between essential and redundant information for recognition is related
to invariance; for instance, certain transformations of the gray scale should not affect the
scene interpretation. Later on we will be more precise about measuring photometric
invariance and in next section we consider another type of invariance.

We wish to develop a tree-structured representation for M (G) based on the equivalence
classes in M(Q). In order to be computationally efficient, this entails measuring the
frequencies of the patterns and assigning short code words to the most frequent values
of F. We will refer to {z = 0} = {w € M(G) : 2(Fw) = 0} as the “background class”;
equivalently, this is the set of patches mapped by F' to the null pattern. The patterns in
{z = 1} are binary matrices; there are 2° —2 = 510 of them since 7, = 1 is identified with
ns = 0 under 7. In terms of frequencies, the classes {z = 0} and {# = 1} dominate the
natural microworld (see Section 6).

5 Geometric Invariance

Most of the non-null patterns in M(Q) (even those with z = 1) are individually very
rare in most images. Since there are a great many of these, a direct, bottom-up Huffman
coding of the distribution of patterns is impractical. Also, this distribution is likely to
vary drastically from image to image. Hence it does not seem feasible to code patches
based solely on photometry and we will further aggregate patterns (and hence patches)
based on geometry in the hope of obtaining a more stable and invariant representation.
We identify two patterns in M(Q) that can be obtained from each other by one of
the eight “pseudo-circular” rotations. Motivated by the conservation of image informa-
tion under intensity inversion, we also identify two patterns which match under the map
{ns} — {z(n) — ns}. In Figure 3 we display three patterns in {z = 1} which are identi-



fied by rotation and inversion. The quotient set resulting from rotation and inversion is
denoted by Y and the map from M(Q) to Y is denoted by y.

Some of the equivalence classes corresponding to binary patterns in M (Q) correspond
roughly to “edges” (see Figure 5). Obviously, if such patterns are coded independently
of “orientation”, i.e., if only the elements of Y are labeled, there will be a severe loss
of information for most applications. Consequently, a finer coding will eventually be
indispensable, even if the statistics of underlying classes are less robust than those of the
compound classes represented by Y.

0 1

1
1 0 1 1 1
1
0 1 1

Figure 3: Illustration of the rotation (lower left) and inversion (lower right) symmetries

6 Frequency Data

We are going to estimate the probability laws of various random variables. What are the
underlying probability spaces? At the image level, it is (Z, P;,;,), where Z is the sample
space of all digital grey scale images of natural scenes (say currently stored on the world
wide web) and Py, is the empirical probability measure. In effect, P, is uniform on Z.
At the patch level, the space is (M (G), P), where P denotes the probability distribution
on M(G) induced by Pj,;, by taking all patches from all images in Z. Given a quantization
F, let Z2(w) = z(Fw) and Y(w) = y(Fw). (Recall that we assume factorization 7 is
incorporated into F.) The random variable Z assumes values in Z = {0, ...,8} and the
random variable ) assumes values in Y, the set of equivalence classes in M(Q) after
factoring out rotation and inversion.

One could “standardize” (Z, P,,,), and hence (M(G), P), in various ways in the hope
of increasing stability. Specifically, any preprocessing (e.g., histogram equalization) of
the grey scale images will in general alter P, and this might stabilize the distribution on
patterns, and in particular the laws of Z and ). For example, we rescaled the intensity
values to the full dynamic range after cutting off the tails. Although we observed a better
match in comparing certain point estimates between data sets and after downscaling, a
corresponding increase in the estimation errors rendered the overall results inconclusive.
Thus, all the experiments are based on the raw image data - there is no preprocessing.

Our experiments involve two collections D; and D2 of photographic images, each con-
taining forty pictures originally quantized to L = 256 grey levels. The photographs are
diverse in origin, scale, and quality; there are landscapes, urban sights, people, animals
and even a galaxy. Collection Dy consists of 196 x 128 thumbnail pictures and is part of



the database used in [9]. It should be noted that D, is somewhat special (e.g., all the
images have very low contrast) and perhaps not very representative of natural images.
Nonetheless, we assume the 80 images represent a random sample from Z.

We first gathered a large sample of patches from each collection and computed the
relative frequencies of all the basic photometric equivalence classes, i.e., of all the patterns
in M(Q). We did this for both uniform quantization, F,, and the alternate scheme, F.
Qualitatively, the results are similar, but there are some differences: F, gives somewhat
more stable statistics and the classes generated are more in keeping with our intuitive
notions of “background” and “edge.” For example, a patch cut from a slowly varying
planar image surface may not fall into the background class {z = 0} under F,. But it
would under F, provided every pixel was within L( grey levels of at least one other pixel.
In contrast, two pixels differing by only one grey level might be discriminated under F,.
Consequently, many more patches are regarded as background under Fy; specifically, the
null pattern has (estimated) mass .22 (the second highest value after P(Z = 1)) under F,
and .65 (the highest value) under F,. Figure 4 displays 36 randomly chosen “background”
patches under F, and F,,. There is clearly a broader spectrum of “structureless” subimages
in the F, collection.

Also, the set of patches corresponding to “edge” patterns (e.g., ns = 1 for pixels in
the top row and 7y = 0 elsewhere) seem to be more coherent under F,. Figure 5 helps
to visualize this difference by displaying randomly selected patches corresponding to the
“edge” pattern described above. From now on, we will focus on F, only.

The estimated distribution of Z based on patches from D; is presented in Table 1. The
frequencies for each z = 0,...,8 are averages p over all forty images, but the individual
forty averages allow us to compute a standard error o. The relative errors (o/u) range
from 0.28 to 0.86 for all but the rarest values. Conditioning on {Z > 0} resulted in a
significant error decrease.

z 0 1 2 3 4 5 6 7
P(Z =2) 0.6461 | 0.1733 | 0.0936 | 0.0515 | 0.0241 | 0.0088 | 0.0022 | 0.0004
P(Z=2Z>0)|0 0.5239 | 0.2599 | 0.1327 | 0.0588 | 0.0194 | 0.0047 | 0.0006

Table 1: Estimated distribution of Z

Consider now the 510 patterns in M(Q) with Z = 1. Of these, 114 have contiguous
sets of 1’s (and 0’s) around the center pixel; for example, there are 16 patterns with exactly
one 1 or exactly one 0 on the perimeter, another 16 with exactly two 1’s or two 0’s, and so
forth. Apart from the background, these patterns (individually as well as cumulatively)
totally dominate the largest frequencies.

For example, in one sample, eleven of the sixteen contiguous patterns with two 1’s or
0’s on the perimeter appear in the 40 patterns with the highest frequencies, whereas only
one “disconnected” pattern (all 1’s except two 0’s in diagonal corners) is among them.

Let Y = 1,...,8 denote the eight equivalence classes in Y displayed in Figure 6. In
this way, the class index corresponds to the number of pixels on the perimeter with values
different from the center.

The estimated probabilities of P(Y = k) for £k = 1,...,8 are given in Table 2. The
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Figure 4: “Background” patches. Top: Uniform quantization. Bottom: Alternate quanti-
zation.



Figure 5: “Edge” patches. Top: Uniform quantization. Bottom: Alternate quantization.



0 0 0 0 0 1 0 1 1 1 1 1
0 0 1 0 0 1 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1
1 0 1 1 0 1 1 0 1 1 0 1
0 0 0 1 0 0 1 1 0 1 1 1

Figure 6: Representatives of the eight classes Y =1,..,8

relative errors (apart from the rarest classes) are 0.48-0.76; again, they are significantly
reduced by conditioning. Conditioned on non-background, the eight classes consume about
40% of the total mass of the distribution of ).

k 1 2 3 4 5 6 7 8

Py =k) 0.0706 | 0.0183 | 0.0333 | 0.0049 | 0.0025 | 0.0016 | 0.0044 | 0.0033

P(Y =k|Z>0)|0.2225 | 0.0596 | 0.1152 | 0.0159 | 0.0079 | 0.0042 | 0.0111 | 0.0087

Table 2: Estimated distribution of ) for the first eight classes

7 A Coarse Representation

In this section we present a coarse Huffman coding of the joint distribution of (Z,Y). We
regard the Huffman tree as a summary statistic for measuring the stability of the resulting
patch labeling across images and transformations; for example, one can compare the trees
obtained before and after downsampling the images. Short code words in the Huffman
tree do not correspond to a small amount of computation in determining the label of one
patch or all the patches in an image. Rendering the labeling computationally efficient is
quite another matter; see Section 10.

We assign distinct labels to the elements of a partition of the range of Z x Y into ten
subsets. The first five are determined by Z alone: Z = 0,2,3,4 and Z > 5. The second
five partition the event Z = 1 into five groups: (Z,)) = (1,1),(1,2),(1,3), (Z,)) €
{1} x {4,5,6,7,8} and (Z,Y) € {1} xY \ {1,2,3,4,5,6,7,8}. Thus the tree in Figure 7
has ten terminal nodes. For example, the code word 0 is assigned to {Z = 0}, the event
with the largest mass, and (1,0,0) is assigned to {Z =1, = 1}.
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P(Z=0)=0.648

P(2=1,Y=1)=0.07 P(Z=2)=0.094
P(Z=1,Y=3)=0.034 =0.051

P(Z=1,Y=2)=0.018 P(Z=4)=0.024

P(2=1, Y=4)=0.033

P(Z=1,Y=4,..,8)=0.017 P(Z>4)=0.011

P(z=0)=0.773

P(Z=1,Y=1)=0.073 P(2=2)=0.0539
P(z=1,Y=2)=0.0238 P(z=1,Y=3)=0.022
P(Z=1,Y=")=0.0163 P(z=3)=0.0167

P(Z=1,Y=4,..8)=0.0153

P(2=4)=0.0042  P(Z>4)=0.0009

P(Z=0)=0.5911
P(Z=1,Y=1)=0.0784 P(Z=2)=0.1096
P(2=1,Y=3)=0.0425
P(Z=1,Y=2)=0.0204 P(Z4)=0.0272

P(2=1, Y=*)=0.0406

P(Z=1,Y=4,...8)=0.0195 P(Z>4)=0.0118

Figure 7: A Huffman coding of the (Z,)) distribution. Top: The first data set. Middle:
The second data set. Bottom: The first data set after downscaling.
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8 Experiments on Invariant Statistics

8.1 Stability Across Images

We repeated all the computations with the second image set, Ds. Typical results are
presented in Figure 8; further ones can be found in [10]. The graph of the conditional
distribution of Z given Z > 0 is visually similar to that of Z, and similarly the marginal
distribution of ) is similar to its conditional distribution given Z > (0. As one can see,
stability extends beyond the order statistics to the individual numerical values. We found
this to be rather surprising in view of the relatively small sample of images.

We also computed the Huffman code based on the coarse partition of the range of
values of the pair (Z,)) described in the previous section. The result is given in the
middle of Figure 7 and should be compared with the tree on top. The tree is not the
same, but closer inspection reveals many similarities.

8.2 Downscaling

Natural images are commonly believed to possess statistical scale invariance as, for ex-
ample, discussed in [6]. To assess this claim, and the sensitivity of our coding to image
resolution, we repeated the computations with the first image set after downscaling the
forty images to half their sizes in both dimensions (by uniform averaging over disjoint
2 x 2 blocks and subsampling). In Figure 9 we illustrate the effect on the distributions of
Z,Z|Z > 0 and Y. There is clear invariance to scaling. (The considerable increase in the
standard error of P(Y = 3) is an inevitable consequence of the downscaling procedure.)
In fact, the Huffman code is identical at the two scales; see Figure 7.

8.3 Photometric Invariance

Given a greyscale transformation, it is useful to distinguish between two types of photo-
metric invariance: strong sense, meaning that individual patches retain their code values
and weak sense, meaning that only the probability distribution of the microimage coding
remains the same. Strong invariance is perhaps an unrealistic goal. We made the (global)
linear greyscale transformation

I, —al,+ 0

(truncating at 0 and 255) for all the images I in the database for selected values of a.
The quantization Fy is (nearly) independent of 5. In Figure 10 we display the fraction
of patch codes which change as well as the estimated probabilities of the events {Z = 0}
and {Z = 1}. As expected, many individual codes change as we shrink or expand the
greyscale, but the probabilities of these events (i.e., the total number of each type) remains
fairly stable.

9 Disk-Based Image Models

We made several sets of 40 artificial 256 x 256 images according to a stochastic image
formation model similar to the ones proposed in [11] and [12] in order to help explain the
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Figure 8: Comparison of statistics for databases Dy and Ds. Top: Distribution of Z.
Bottom: Conditional distribution of ) given non-background.
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Figure 9: Comparison of original and downscaled statistics. Top: Distribution of Z.
Middle: Conditional distribution of Z given non-background. Bottom: Conditional dis-
tribution of ) given non-background.
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origins of scaling in natural images. First, points are uniformly scattered over the lattice
with density equal to one point per square pixel. Each point serves as the center of a disk
whose radius R is randomly selected according to the density

L O—1r=f r>1,
f(’rae)_{o 7‘<1,

where 6 > 1 is the parameter of interest. Finally, disks are “colored” with an intensity
value chosen uniformly from {0, ...,255}. An example is given in Figure 12 for § = 3.

There are several convincing arguments that the sizes of objects in natural images scale
like 7=3; see the analyses in [6] and [8]. We computed the same statistics for Z and ) for
the image model with 6 € {2,2.5,3,3.5} that we computed earlier for real images. The
best match occurred with § = 3, and some comparisons of the § = 3 data with natural
data are displayed in Figure 11. Given the simplicity of the model, and after conditioning
on non-background, the resemblance is rather striking.

10 Coding: Vector Quantization of Patches

One motivation for this work was to find informative primitive features for applications
(e.g., shape classification) in which the fine greyscale structure needn’t be preserved. Sup-
pose every patch w has been assigned a unique label L(w) and that L(w) depends only
on the photometric equivalence class of the patch w, i.e., only on the pattern n = Fyw in
M (Q). For example, the labels might correspond to the partition of size ten of the (Z,))
values mentioned in Section 7, or to some other decomposition of M(Q) based on geome-
try. Similar ideas were very effective in classifying binary images of handwritten digits [1]
and preliminary experiments on classifying grey level images of leaves are promising [10].

However, assigning a label to every 3 x 3 patch in a large image might be compu-
tationally difficult. The Huffman code tree was merely a summary statistic in order to
measure the stability of the patch labels; the expected depth in that tree is not a measure
of efficiency; indeed, the amount of computation required to perform each split is not even
incorporated. In practice, we want to determine L(w) by asking a small number of very
simple questions about the grey level configuration w.

Consider queries of the form Xg(w) =1 if ws — wy > L/Lg and X4 (w) = 0 otherwise,
where s and t are two distinct pixels in the 3 X 3 neighborhood which defines the patch.
Let X denote this set of 9 x 8 = 72 such binary functions. It is intuitively clear, and easy
to show, that F,w is determined by X'(w) (but not vice-versa). We could then quantize
the patch world by constructing a binary code tree based on X. Still, the amount of
computation necessary to determine a patch label might be rather large, although much
smaller than separately checking for each label type directly from the definitions.

Instead, we consider a lossy scheme and regard patch labeling as a classification prob-
lem itself in which the “true” classes are the labels and some errors are tolerated. For
example, the exact labels might be replaced by the terminal nodes of a binary decision tree
T using the queries in X as splitting rules. Ideally, the mean path length of 7' (which is
now truly proportional to computation) would be small and the terminal nodes of T' would

16



VERTICAL BARS REPRESENT ERRORS OF +— ONE STANDARD DEVIATION
0.9 T T T T T T T T

—— D1
* Simulation |

0.8

0.4 Bl

P(Z=2)

0.2

—e— D1 )
* Simulation
0.6

0.5

0.4

2|250)

P(Z=

0.2

0.1

N& -

—e— Original
* Downscaled

KZ>0)

P(Y=

0.1

—0.05 L L L L L L L L

Figure 11: Comparison of statistics for real and simulated images. Top: Distribution of
Z. Middle: Conditional distribution of Z given non-background. Bottom: Conditional
distribution of ) given non-background.
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Figure 12: A 512 x 512 simulated “disk” image

be nearly homogeneous with respect to L. One could construct T with standard greedy
algorithms based on stepwise entropy reduction (e.g., CART [5]) or, more ambitiously, by
accounting for both mean accuracy and mean path length using global optimization. In
either case, each w is finally assigned a variable-length binary “code” T'(w) determined by
the terminal node in which it lands. Retaining the internal nodes which are visited leads
to a hierarchical scheme. Experiments are underway to assess this program.

11 Conclusion

We have presented a scenario for coding natural microimages based on mapping 3 x 3
greyscale patches to equivalence classes determined by photometric and geometric criteria.
In order to assess the universality of the coding, we extracted a large set of 3 x 3 patches
from two natural image databases. We regarded the set of microimages as a random
sample with respect to the empirical probability measure on the space of all patches from
“all” natural images. The mappings into equivalence classes are then random variables,
whose dominant masses were found to be reasonably insensitive to the particular images
from which the patches are drawn and to vagaries in the original greyscale representation.
The distribution is also nearly invariant to resolution, allowing one to use the same coding
scheme at multiple scales.

These properties suggest that some type of efficient, formal coding of small patches us-
ing standard information-theoretic principles might yield valuable elementary features for
image analysis. We presented one example of a partition of the patch world and one exam-
ple of how in practice these labels might be efficiently approximated with tree-structured
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vector quantization based on simple queries about intensity differences. This is only a first
step. More finely drawn and informative groupings are likely to be needed for any particu-
lar application; in particular, the orientation of “edge-like” patterns must eventually play
an important role. Perhaps a practical coding involves two phases, one coarse-grained but
“universal,” and the other dedicated to the particular imagery or application. Also, the
tradeoff between accuracy and efficiency must be explored in the context of lossy approx-
imations to the true codes. Some of these issues are currently being investigated in the
context of classifying natural shapes [10].
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