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Abstract: We study interactive protocols to assist a person in finding a particular object
in a large database, focusing on image retrieval: A person has a particular image “in mind”
and responds to a sequence of machine-generated queries designed to show the target image
as quickly as possible. For example, at each step the user declares which of two displayed
images is "closest” to his target. The central limiting factor is the ”semantic gap”: The
images are generally indexed by ”low-level” intensity-based features rather than ”high-level”
semantic content. As a result, the answers are inevitably subjective and the interaction is
inherently stochastic.

We explore statistical models for the “questions” and for the “answers” in the Bayesian
formulation of comparison search introduced in (Cox, Miller, Minka, Papathomas & Yianilos
2000). Each new question (pair of displayed images) is chosen to minimize the expected
conditional entropy of the current posterior distribution over targets given the previous
answers. We introduce answer models based on independent random metrics whose distri-
bution may depend on both the question and the target; different metrics correspond to
different weightings of individual features. The modeling challenge is to account for psycho-
visual factors and sources of variability in human decision making. Perceptual limits and
”inconsistent answers” are addressed by randomizing the choice of metric and final answers;
and a logarithmic transformation accounts for the special importance of very close matches.

The resulting algorithms are demonstrated in a simplified scenario: Searching for a
polygon characterized by color, size, shape and elongation. Performance is measured by
the expected number of queries necessary to locate the target polygon. Data collected from
human users and from simulations is analyzed in terms of two fundamental factors which
reduce the flow of information: “Desynchronization” between the underlying answer model
and observed human behavior and residual uncertainty in the answers given the target.
Also, performance is compared with theoretical bounds and previous models. Finally, we

discuss extensions to a practical search engine for large, real databases.

Keywords: man-machine interaction, comparison search, image retrieval, Bayesian
model, decision tree, random metric
1 Introduction

Let Y denote a set of objects, such as pictures, or segments of text or sound, and

suppose the user of a search engine has a subset of these “in mind.” Although Y is



often quite large, a few objects can be presented to the user in an interactive format
which allows him to make choices among them. For instance, the “retrieval system”
might display several sentences or images on a computer screen and the user might
click on those which are “relevant” or “closest” to his target object(s). This process of
alternating between presentation and feedback continues until the user terminates the
search, for instance when a target object is presented, or when an object is presented
which is deemed “close enough.” Or the user may simply give up. Thus minimizing
the search time - number of iterations - is important.

The problem is reasonably well-understood for written documents, such as books
in libraries or on web sites, and automatic indexing of text is feasible. The user
might supply a list of key words and the system display the matching documents,
either by searching through the original documents or through pre-processed indices
(summary statistics); see (Salton 1968). Searching can be made efficient by exploit-
ing the information residing in the statistical distribution of words and other verbal
constructs.

We concentrate on images, and certain types of queries, although much of our
analysis extends to other objects and protocols. Recently, the number of images stored
numerically, and the number of people searching for particular ones in large databases,
have grown significantly. There are many applications for interactive systems, from
simple web-based “browsing” (e.g., of large and varied public databases) to more
dedicated searches involving specialized material (medical records, art catalogues,
criminal records, historical photographs, industrial parts, etc.). There is also a large
and growing literature on image retrieval; see the recent survey (Smeulders, Worring,
Santini, Gupta & Jain 2000); in fact, most of the papers are from the late nineties.

Many interactive scenarios involve rather complex “queries” submitted by the user
to the system, at least in order to initiate the search; for example, the user might
provide a sketch, an image, or constraints of a numerical or semantic nature. The user
then plays an active role and is often assumed to have knowledge about the manner
in which images are represented and processed. Such systems are difficult to analyze
in mathematical terms, say with statistical or information-theoretic tools. Here, on
the contrary, we consider only simple queries submitted by the system to a relatively
passive user.

Decisions about what to display usually involve a “distance” d(y,y’) between



two images y and y’ which is based on standard metrics adapted to the individual
“features” (see below). Ideally, d(y,y’) is “small” when y and y’ look alike to human
beings. A variety of query types and selection criteria are possible. For example, the
system might display k& images at each step and the user might select the one which
is, in his opinion, closest to the specific image, or general type, he is seeking. Or
the user might select a subset of those displayed. The system then displays another
set of images, hopefully more homogeneous and closer to the target(s), for instance
the k nearest neighbors of the one selected by the user under the metric d. The
interaction continues until a target image is displayed (and presumably recognized).
Most image retrieval algorithms employ some variation of such relevance feedback,
introduced in (Minka & Picard 1997); example systems are Photobook (Pentland,
Picard & Sclaroff 1996), Pictoseek (Gevers & Smeulders 2000), Surfimage (Meilhac
& Nastar 1999), PicHunter (Cox et al. 2000) and QBIC (Flickner, Sawhney, Niblack,
Ashley, Huang, Dom, Gorkani, Hafner, Lee, Petkovic, Steele & Yanker 1995).

In contrast to text, images are usually not indexed by their “high-level” symbolic
content since automatic indexing of this nature is currently an unsolved problem in
computer vision. In particular, natural global descriptions, such as “a large river
behind a small cottage,” are virtually impossible to match automatically to images in
a large database. Instead, the images are represented by “low-level” intensity-based
features, often given as a histogram, such as color (Swain & Ballard 1991), (Vertan
& Boujemaa 2000), photometric or geometric invariants (Schmid & Mohr 1997),
(Tuytelaars & van Gool 1999), space-frequency filters (Manjunath & Ma 1996), tex-
ture (Kankanhalli & Zhang 1994), or combinations thereof as in (Gupta & Jain 1997),
(Jain & Vailaya 1996) and (Pala & Santini 1999). The user’s choices are assumed to be
driven by these attributes however inconclusive or unfamiliar (or even meaningless)
they might be to many people. This discrepancy between numerical indexing and
symbolic content is sometimes referred to as the “semantic gap.” Consequently, the
answers are inevitably subjective and the interaction is inherently stochastic. Indeed,
this is the most distinctive aspect of the image retrieval problem and the motivation

for a statistical approach.



1.1 Bayesian Framework

We adopt the Bayesian formulation in (Cox et al. 2000) based on stochastic compar-
ison search. The user has exactly one image ¥ in mind, and Y € Y. (This is called
“target search”; two other prominent scenarios are “category search” and “brows-
ing.”) Several images from ) are displayed at each step and the user selects the one
which he deems closest to Y. This process continues until Y is among the displayed
images; it is assumed the user recognizes it and the search is over. Performance is
measured by the expected number of queries until Y is displayed. By concentrating
on the interactive process and specializing to target search and comparison tests, the
authors in (Cox et al. 2000) are able to develop ties with Bayesian inference and
information theory.

The simplest case, and the only one we consider, is a choice between two images
y and y’ from Y. In (Cox et al. 2000), a distance d is fixed. Were the user’s choices
based on d, the response would be y if d(y,Y) < d(y',Y) and y’ otherwise. Instead,
to account for subjectivity, the authors assume a “blurring” of this response and the
actual one is modeled as a random variable whose probability distribution depends
on d(y,Y)—d(y',Y). As in CART (Breiman, Friedman, Olshen & Stone 1984) and
other tree-structured algorithms, each new query is chosen to minimize the expected
conditional entropy of the distribution over targets given the previous responses. This
expected entropy depends in turn on the posterior distribution - a barometer of search
efficiency. These quantities are easily estimated with Monte Carlo sampling. As we
shall show, when the posterior distribution becomes peaked the display items are

necessarily those with relatively high mass.

1.2 Modeling Human Behavior

The real interactive process may be more fundamentally random than a blurred re-
sponse to a fixed and known metric. We consider more general “answer models”
because typical users do not have a specific metric in mind (let alone know what
a metric is) and certainly not a universal one. Also, some attributes are typically
weighted more heavily than others depending on the interaction between what the
user has in mind and what he sees. We therefore explore behavior models based on

a sequence of independent random metrics whose distribution may depend vy, y’ and



Y. The different metrics correspond to different weightings of individual features.

Successful modeling must account for psychovisual factors and sources of variabil-
ity in human decision making, and the individual models we present are but examples
of how one might address these issues. We concentrate on three inter-connected fac-
tors: 1) perceptual limits due to imprecise measurements of color, size and other
metric attributes; ii) “inconsistent” answers due to fatigue, boredom, etc; and iii) the
exaggerated importance of very close matches. The first two factors are accommo-
dated by the randomization of the choice of the metric and by random vote-switching
in order to insure that the posterior mass on the actual target remains positive. To
better understand the third factor, imagine a simplified world with only four shades
of grey - black, dark grey, light grey, white - with equal “spacings” among. If a person
has a light grey disk in mind and is shown a dark grey triangle and a light grey square,
he will likely base his answer on brightness not shape and choose the square; basi-
cally all metric-based models accommodate such behavior, assuming the attributes
being matched are among those in the image representation. However, suppose the
two images presented are a black triangle and a white square; the choice is then less
evident even though, on a linear scale, the relative gap in brightness is the same. Put
differently, there is often a premium on being “very close.” This argues for adopting
a logarithmic scale for similarity measurements.

We also attempt to isolate and quantify the main factors which reduce the flow
of information provided by the user’s answers, settling on "randomness,” the amount
of uncertainty in the answers knowing the target, and ”synchronization,” coherence
of the assumed answer model with actual human behavior. The ideal state is low
randomness and high synchronization, for instance when both query selection and
user responses are based on the same fixed metric d. But this never happens, at least
not in our experiments with people. Instead, our data suggest that more random
models - anticipating more variability in the answers - lead to better synchronization

and better performance in human searches.

1.3 Experiments

To facilitate data collection and quantitative analysis we specialize to images contain-

ing one simple and clearly characterized shape and texture. Specifically, we consider
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Figure 1: A sample of polygon images.
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a database of polygons characterized by size, shape, color and elongation. A sample
of these is shown in Figure 1 and the user interface for searching is shown in Figure
2.

Two types of experiments are reported:

Synthetic Searches: The responses to queries are machine-generated - according
to the same model which drives query selection and evaluation of the posterior distri-
bution. Data collected from synthetic experiments yield the search time distribution

as well as the optimal performance of any given model and degree of randomness.

Real Searches: The feedback is provided by people, and hence there is always
a degree of desynchronization between the assumed answer model and the responses
of any given population of users. Indeed, the degree of desynchronization strongly

affects performance; the role of randomness is less straightforward.

For instance, with a database of 200 polygons, the theoretically optimal mean
search time is 5.8 (iterations). For the models we explore, the means in synthetic
experiments ranges from 6.5 to 8.5, and can be ranked in accordance with residual

entropy, and the means in human searches range from approximately 8.5 to 11.5 and
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Figure 2: The user interface for experiments with polygons

can be ranked in accordance with desynchronization, but not with residual entropy. Of
course the relative means among models are more instructive than the actual values.
And surely all the models presented here would undergo significant alterations in any

specific application; see the concluding discussion.

1.4 Organization of the Paper

Question and answer models are defined in §2. We specialize to comparison search in
§3 and to query selection by successive entropy reduction in §4. Then, in §5, we de-
rive a lower bound on the mean search time in the special case in which the answers,
and hence the search time, are deterministic given the target. Features and random
metrics are introduced in §6 and some computational issues addressed in §7, includ-
ing Monte Carlo estimation of the posterior distribution and the entropy-minimizing
display. In §8 various answer models are introduced, including the “IID” case, several
“dedicated” models in which the distribution of the chosen metric depends on both
the query and the target, and a logarithmic transformation motivated by psychovisual
observations. Two useful model properties, desynchronization and randomness, are
defined in §9 and then plotted against the mean search time in §10, in which exper-
iments with polygons are presented, both synthetic ones and those based on a small

subpopulation of users. Finally, in §11, we discuss our findings as well as extensions



to real image databases and the prospects for further statistical analysis.

2 Statistical Formulation

Each user has a single target during any given interactive session. That target is
a random variable Y with marginal (or “prior”) distribution po(y),y € V; we can
interpret po(y) as the fraction of potential users with target Y = y. This distribution
will be change as information is collected from queries. In all our experiments we take
po to be uniform; however, we make no such assumption in the general development,
anticipating cases in which a non-uniform prior is appropriate. This results, for
example, when the representation of objects includes linguistic annotation; prior to
the search, keywords supplied by the user can be matched to the elements of } and
a prior distribution constructed based on an appropriate linguistic metric.

We also assume that that user’s response to a system query is not a deterministic
function of the query and the target; instead, it is a random variable whose probability
distribution will generally depend on both. In fact, our model for query selection is
based on the joint probability distribution of the target and a sequence of query
responses. After briefly considering a rather general framework for question and
answer models, we specialize (§3) to the case of comparison queries generated by
stepwise uncertainty reduction and eventually (§6) to answers based on auxiliary

random metrics.

2.1 Question Model

Let ) denote a set of possible system queries designed to solicit information about the
user’s target. We assume all the queries are of the same general type. The elements of
g € (Q might be subsets of J a fixed size and the user might be asked to declare which
of these are “relevant,” “not relevant” or “closest” to his target Y. Let A denote the
set of possible answers to the type of questions in ().

Since the interactive process is sequential and adaptive, we define a question model

to be a family of functions

H={m: A" - Q, t=1,2,3,...}



where m; € () represents the first question asked and w4y = mqq(@1, ..., 2¢) is the
question asked at step ¢t + 1 if zq,...,2; € A are the responses to the ¢ previous
questions and the target Y is not yet identified. Thus a question model is simply a
protocol for deciding what question to ask the user at any given step depending on

the previous questions and the corresponding answers.

2.2 Answer Model

Let X, denote the answer to question ¢. Due to user subjectivity and variation, we
regard X, as a random variable whose distribution given Y remains nonsingular. An
answer model refers to a joint conditional distribution 4 = L£(X,,q € Q|Y). (An
implicit assumption is time-invariance: As in (Cox et al. 2000) the answer model
is the same from one session to another and from one user to another.) The only
law of importance is the one for sequence of answers determined by the protocol
(m1,m2,...) € Q. The corresponding sequence is denoted X, = (X, , X,,,...) and
defined recursively: X, = X, where ¢ = m3(X,, ); Xr, = X, where ¢ = m3( Xy, , X1, );
and so forth.

In §4 we shall consider a particular question model based on an assumed answer
model A. In other words, the recipe for generating queries is determined by a par-
ticular statistical model for how the user responds. Of course in reality there is a
discrepancy between the statistical properties of the assumed responses and those of
the actual responses.

The basic assumption we make about the answer model is conditional indepen-
dence: Given Y, the random variables {X,, ¢ € @} are independent. This appears to
be a reasonable assumption about human behavior (and is made is (Cox et al. 2000)
as well) although we have not attempted to test it. Thus for any sequence of queries

q1, ..., q: and corresponding answers zy,...,x; € A:

1
P(X, = a1, Xg = 2|V = y) = [[ P(X,. = 2.]Y = wp).

s=1

In particular, the same factorization applies to (X, , Xr,, ..., Xr,)-

10



3 Comparison Search

From here on we specialize to the case of comparison search. Each query corresponds
to a distinct pair y;,y; € V; thus Q = {(7,7),1 < i < j < n}. We refer to y; as the
“left image” and y; as the “right image.” The set of possible values assumed by Xj;
is A={L,R,l,r}:

L if Y is the left image

R ifY is the right image

[ if'Y is neither, but closer to the left image
if Y is neither, but closer to the right image

~

Since the search terminates with the appearance of the target among the two displayed
images we have P(X;; = L|Y = y;) = P(X,;; = R|Y = y;) = | and we need only

consider as answer sequences finite strings from {/,r}:

x € {L,r} = [ J.r}
t>1
Given x of length ¢ > 1, the pair displayed at time ¢ 4+ 1 is denoted m;11(x) =
(Lig1(x), Rip1(x)). (The first pair is my = (L1, R1).) Therefore, since the answers are

conditionally independent, we can represent an answer model as follows:
A=Apijr}, pijx = P(Xi; =Y = y),

where 7, 7, k runs over all triples from {1,2,....,n} with i < j and k # 1, .

It is useful to visualize the question model as a quaternary tree, as illustrated
in Figure 3. The four branches emanating from each vertex (i.e., internal node)
correspond, from left to right, to the four answers {L,{,r, R}. Two of these symbols,
L and R, are reserved for terminal nodes, and hence only two of the four branches are
developed at each vertex. Notice that each vertex at depth ¢ corresponds to a string
x of length t. We will write Y(x) for the set of “active hypotheses” at x, meaning
the elements of ) with positive mass under the posterior distribution over Y given

the query history at x. More specifically,

V(x)={y e Y:plylx) > 0}

11



where

pilylx) = P(Y = y[Bi(x))

is the posterior distribution after t queries, x = (x1,...,2;) and Bi(x) = {X,, =
Ty ey Xy = Ty}

We make several assumptions about the question protocol II. In order to insure
that the search terminates, every image in Y(x) must be eventually displayed at one
of the terminal descendants of x. Assume also that only images from Y(x) can be
displayed at vertex x; in particular, no image is then displayed twice. In principle
this might limit the capacity to obtain “good splits” of the database but in practice
it a harmless assumption and guarantees termination in at most % steps (assuming n
is even).

The search time T is well-defined once 1l is specified and depends on both the
target Y and the answer path corresponding to the query sequence. Specifically,
T =T(Y,X,) where, for a string x of length %,

T(y,x)=min{t > 1 :y = Ly(x1,...,x4-1) or y = Re(x1,...,24-1)}.

We will write £4T for the mean of T relative to an answer model A. Efficiency of

the search process is then measured by ET" and other distributional properties.

4 Stepwise Uncertainty Reduction

Setpwise uncertainty reduction is the standard recipe for building decision trees in
machine learning and statistics (Breiman et al. 1984) and is the method we will use

for constructing II. Define
= in H(Y|X
m = arg min H(Y|X,)
and, for t > 1 and x = (21, 22, ..., T4),
() = argmin H(Y|B,(), X,). 1)

Here, H(U|B, V') denotes the conditional Shannon entropy (Cover & Thomas 1991) of
U given V under the measure P(.|B), i.e., the expectation under P(.|B) with respect

12
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Figure 3: The query protocol represented as a quaternary tree.
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to pyv of H(U|V = v).) In §7 we will indicate how to compute or estimate these
quantities based on a sequence of random metrics.

One difference with CART and most other work on decision trees is that we do
not precompute and store the entire tree (see Figure 3). Instead, only a portion
of the tree is computed - the branch containing the queries indexed by the answers
of the user. Consequently, this computation is performed on-line, i.e., during the
interactive session. Another difference is that the evaluation of (1) is model-based
not data-driven, although, in order to limit delays in presenting a query, the entropy-
minimizing query in (1) is only estimated from a sample under the posterior; see
87.

Solving (1) for the best query ¢ at step ¢ 4+ 1 is not equivalent to maximizing the
information H(X,|B:(x)) in X, given the past. Instead, one maximizes the mutual

information [(X,,Y|B:(x)) = H(X,|B:(x)) — H(X,|B:(x),Y):

H(Y[Bi(x), X,) = H(X,,Y|By(x)) — H(X,|Bi(x))
= H(Y[Bi(x)) = [(X,,Y|By(x))

Thus minimizing uncertainty involves balancing large values of H(X,|B:(x)), the
information content of the next answer given the answer history, and small values
of H(X,|B:(x),Y), the amount of uncertainty in the next answer given both Y and
the answer history. Due to conditional independence, and since we can restrict the

minimization in (1) to values g # 7y, ..., T,

H(X,|By(x),Y) = Y P(Y = gl Bi(x) H(X,|Y = ys)

Other criteria for query selection are possible. One could, for example, sample
two images from the posterior distribution p;(y|x),y € Y, or choose the two images
with the largest posterior masses. Experiments are performed in (Cox et al. 2000) to
assess the relative merits of different selection criteria in the context of one particular
answer model (see §8); two conclusions are that entropy reduction is the most efficient,
especially as n grows large, and that choosing the most probable images under the
posterior tends to give image pairs which are too similar to each other.

In fact, stepwise entropy reduction will automatically favor queries with relatively

large posterior masses since termination of the search coincides with the presentation

14



of Y. Fix ¢ = (v,7) and define Z, = [ if X, € {L,l} and Z, = r if X, € {R,r}. Let
Biii(x) = Bi(x) N{Y £ y;, Y # y;}. As usual, x = (21,...,2¢) € {I,r}".

PROPOSITION: H(Y|B,(x),X;;) = P(Y # yi,y;|Bi(x))H(Y |Buj, Zij).

Proof: Since {X;; = L} = {Y = y} and {X;; = R} = {Y = y,}, we have
H(Y|B:(x),X;; = L) = H(Y|B:(x), X;; = R) = 0. Consequently,

H(Y|Bi(x),X;j) = Y P(Xy=a|B(x)H(Y|Bi(x),X; = a)

a=L,R,,r

= ) P(Xy = alB() H(Y|B(x). X;; = 0)

a=l,r

= Y P(Zj=a,Y # vy, y| BAx))H(Y|By(x), Zij = a,Y % ;. y;)
a=l,r

= Y P(Y # yi,y;|Bi(x)) P(Zi; = a|Byj(x)) H(Y | Byij(x), Zij = a)
a=l,r

= P(Y # yi, yj| Be(x)) H(Y | Byij(x), Zi; ).

Of course P(Y # y;,y;|B:(x)) is just the posterior mass on Y \ {y;,y;} after ¢
questions. Consequently, images y with “significant” mass under the posterior are

often chosen as query candidates due to the multiplication by the factor P(Y #
yi Yi| Bi(x)).

5 The Deterministic Case

During an interactive session, exactly one path of the tree in Figure 3 is traversed
from the root to a terminal node labeled by a display image. In general that path
is not determined by Y due to residual uncertainty in the answers; in particular,
even with the same target and the same display protocol, a different path might be
traversed during another session.

In this section we consider an ideal scenario in which the answers are determined
by the target. Thus, P(B:(x)|Y = y) € {0,1}, H(X,|B:«(x),Y) = 0, and query
selection at step ¢ + 1 then reduces to maximizing H(X,|B:(x)) over all ¢ € Q.
Notice also that Y(x) N Y(x') = () for any two distinct vertices x and x" at the same

depth.
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The deterministic case corresponds to source coding for the elements of ) under
the distribution pg. Two symbols, L, R, from the quaternary alphabet A = {L, R,[,r}
are reserved for terminal nodes. Were A binary, entropy reduction would amount to
minimizing |P(X, = I|Bi(x)) — 3| over available queries and the setup would be
“constrained twenty questions”: There is a prior distribution on “hypotheses” y € Y
and a distinguished set of questions of the form “Is Y € C7”7 for selected subsets
C' C Y; the problem of finding the optimal mean search time is well-known to be
NP-complete. Were all such subset questions available, the optimal mean search time
is provided by Huffman coding and lies in the interval [H(po), H(po) + 1); in fact,
the same bounds are known to hold for top-down code construction with successive
entropy reduction. Comparison search is more efficient due to the larger alphabet, and
one would expect mean search times of order between Hy(po) = %H(po) and Hz(po) =
H(po) for efficient codes. Indeed, the optimal mean search time with comparison
search and a uniform prior is asymptotically logn — 2 (see below). (Throughout this
paper log means log,.)

It is not difficult to determine the ideal protocol Il and corresponding mean search
time. Suppose Y = {y1,y2,...,yn} where po(y1) > po(y2) -+ > po(yn). Since T =
T(Y), have

ET =Y po(y)T(y)

where T': Y — {1,2,...} satisfies the constraint
HyeY:T(y)=1t} <2, t=1,2,..

(This representation of ET does not exist in the general case.) The function T' (equiv-
alently, the protocol II) which minimizes ET' is clearly T'(y1) = T'(y2) = 1,T(ys) =
-+ = T(ys) = 2 and, in general, T(y;) =t for 1 € G, = {2' — 1,...,2""1 — 2} for
t=1,2,..,0(n) — 1 and Gy, = {2900 — 1, ...,n}. Here ¢(n) = [log(n + 1)], the

greatest integer less than or equal to n + 1. Thus,

ET > po(yi)[log(i + 1)].

=1

In order to interpret this bound in coding terms, let 0 < n < 1 satisfy
Zn[log(i—}—l)] -1
=1

16



and put

p(ys) = ot =1, (2)
Then

. Po(yi)

D(pollp") = > poly:)log =
p P*(yi)
= —logn > _po(ys)llog(i + )] + Y _ polyi) log po(ys)
1=1 1=1

Thus,

MingET = (—logn)™ [D(pollp”) + H(po)]

Since n — 1 as n — oo, the limiting bound is 2(D(po|p*) + H(po)), which is at

least %H(po) with equality if and only if pg = p*. In other words, only for p, = p*
does reserving L., R for terminal nodes still yield an optimal code with a quaternary
alphabet.

Finally, in the uniform case,

MinyET = Y P(T >1)
t=1

which sums to the expression in (3) below. Summarizing the above arguments:

THEOREM: In the deterministic case, the mean search time is minimized by

pto= ZPO(yi)[log(‘i‘"l)]

=1
= (=logn)™ [D(pollp*) + H(po)]
which is achieved by displaying the images with indices in {2'—1,...,2!T1 —2} at depth
t where p* is defined in (2). In the uniform case,

K= 6) - = 20— g(n) — 1] 3
= logn—Z—l—O(b%), n — oo. (4)

17



Note: It should be emphasized that these bounds could only be realized by “ideal
answers” in the sense that the optimal display items at vertex x are indeed available;
put differently, there must be enough queries to generate all possible subset questions.
In particular, the first query must put half of (G5 on the left side and half on the right
side, the queries at depth two must divide G35 in exactly the right way, and so forth.
Needless to say, this cannot be achieved in practice when splits (answers) are based
on measuring target-to-query distances in terms of image attributes. (The case of
metric-based splitting in general spaces is treated in (Yianilos 1993).) It should also
be noted that this query strategy is global in nature and does not correspond to ideal
behavior for stepwise uncertainty reduction, namely equal division of mass.

As an example, with n = 200, perfect splitting and a uniform prior, the distribu-

tion of 7" is (.01,.02,.04,.08,.16,.32,.37) and (3) yields ET = 5.8.

6 Features and Metrics

In order to construct answer models we need a quantitative way to compare objects.
This will involve a linear combination of standard metrics over individual “features”
of the objects in Y. From now we only consider answer variables which depend func-
tionally on a metric. Hopefully, the corresponding family of answer models captures
how people respond to queries. We need not assume, as in (Cox et al. 2000), that
there is one distinguished metric. On the contrary, we will express the answer vari-
ables in terms of a sequence of random metrics, and consequently the answer model

in terms of probability distributions on a space of metrics.

6.1 Features

We suppose that each object y is represented by a “feature vector” or “index” f(y)
(and that f(y) # f(y') for y # y' so that the elements of the database remain
distinct). The objects in Y are automatically pre-processed and all the indices are
stored. In the case of images, the features are computed from the raw intensity data
and are typically grouped into broad classes which represent certain local or global
characteristics of y. Some common examples are color histograms, Fourier or wavelet

coefficients, texture attributes and edge statistics (e.g., edge orientation histograms).

18



The index of y is then typically of the form f(y) = (fi(y),..., fu(y)) where each

feature f,,(y) is a real vector say of dimension s,,.

6.2 Metrics

The distance between two images is based on the two feature vectors. Let d™) be an

appropriate metric on R*” x R*» for feature f,,, m = 1,..., M. These metrics are fixed
throughout. For simplicity we will write d"(y, ') instead of d"™ (f,.(y), fm(y')). For
each sequence (A1, ..., Ay) of positive coefficients, define a metric on images by
M
d(y.y') =Y And™(y,y), (5)
m=1

and let D denote the space of all such metrics generated by coefficients in [0, 1]M.
Distributions on D are then distributions on the M-dimensional unit cube.
Foreach1 <i<j<n, d€Dandyec), define

[ ifd(y,y) < d(y;,:
zij(dy) = { r oth((jvviysl )
Let {D;;} be a family of random variables with values in D, let Z;; = x,;;(D;;,Y) and
define
L Y=y
Xij=q¢ R Y=y
Zii Y #yi,y;
Thus D;; and Y together determine the answer to the question (¢, 7).
In order to satisfy our conditional independence assumption we will suppose that
{D;;} are conditionally independent given Y. Consequently the answer model is

determined by the law pg and the marginal conditional distributions
vije(F) = P(Dij € FIY =), F CD, i<jk#ij.
These distributions determine the answer model {p;;x}:
pijp = P(Xij = 1Y = yx)
= P(aij(Dijyn) = 1Y = yi)
= Vijk(Dijr)
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where D;;x = {d € D : d(yi,yr) < d(yj,yr)}. (Notice, however, that for & = 1,
P(Xi; =1IY = yx) = 0 whereas v;1(D;;r) = 1, and similarly for k£ = j.)

7 Computational Issues

Computing the display protocol II is relatively straightforward. The two key quan-
tities are the posterior distribution p:(y|x) = P(Y = y|B:(x)) and the conditional
entropy H(Y|B:(x), X,). These are expressed in terms of py and {v;;x} (equivalently,

{pi;jr}) in the following two subsections.

7.1 Computing the Posterior

Fix x = (21,...,2;) € {l,r} and By(x) = {X,, = z;,..., X, = 31}. Let Wy(x) C
Y be the set of images displayed prior to reaching x, namely those images with
indices Ly, Ry, La(x1), Ra(x1), ..., Le(x1, ..y 2y,), Re(1, ..., x¢,). Notice that By(x) C
{Y e Wi(x)}°.
Then p;(y|x) = 0 for y € Wi(x) and for y € Wi(x)°,
pi(ylx) = P(B(x)|Y :E)PO,(y).
>, P(Bd(x)|Y = y)po(y)

with

P(B:(x)|Y =yr) = [[{zszl}pisjsk + [p,=r (1 — pisjsk)]

-

s=1

|
:ﬁ

[Izo=3¥ijuk(Disjik) + Izo=rViejuk (D5 0]

1

w
Il

7.2 Minimizing Target Entropy
Recall from §4:

H(Y|Bi(x), Xij) = Y P(Xi; = a|B,(x))H(Y|Bi(x), X, = a).

a=l,r

For a € {I,r},

P(Xij = a|lBi(x)) = > vijr(DY)pe(ylx)
ki,
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where A' = A and A" = A°.
For the entropy term, we need P(Y = y;|B:(x), X;; = a), which is zero for k =1

or k = j and, otherwise, reasoning as above:

Viik (D) e (yr|x)

P(Y = y.|B Xij=a)= '
( yk| t(X)7 J a) Zk#i,j I/Z'jk(ngk)pt(yHX)

(6)
Once the next query m;y1 is selected, the posterior is updated from (6):

prr1(ylx, xep1) = P(Y = y|Bi(x), Xy = Te41).

7.3 Monte Carlo Estimation

We approximate the posterior distribution and the solution of (1) by Monte Carlo
sampling. In order to update the posterior (see §7.2), for each y;, we randomly sample
a fixed number of metrics in D (under the measure v determined by the new query
i,7) and count the number of these which satisfy the inequality appearing in the
definition of D;ji; this gives a reasonable approximation to v;;x(D;jx). The posterior
distribution is then easily obtained by normalization.

In principle, finding the entropy-minimizing query in (1) would involve updating
the posterior for each possible pair (z,7) and then computing the corresponding con-
ditional entropy. This would result in an unacceptable delay in presenting the next
pair of images to the user. Instead, we sample n pairs from the current posterior
distribution and choose the pair which yields the smallest conditional entropy. In the
experiments we report, n = 10, which is evidently quite small; choosing n = 100 gave
slightly more efficient searches, whereas the difference between n = 100 and n = 1000

was not detectable.

8 Some Metric-Based Answer Models

In this section we specify a variety of system models A based on fixed and random
metrics. It is assumed throughout that a candidate query ¢ = (7,7) at step ¢t + 1 is

distinct from the previous ones 7y, ..., 7.
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8.1 One Fixed Metric

This is a baseline case - deterministic answers based on one fixed metric d* € D. Thus
Vijk = dg» (a point mass), Z;; = x;;(d*,Y) and of course v;;x(D;;x) € {0,1} depending
on whether or not d*(y;,yx) < d*(y;,yx). Since Y determines 7', minimizing (1) is
equivalent to maximizing H(X,;|B:(x)) and the optimal mean search time is logn — 2
plus smaller order terms in the uniform case. This strategy was executed in (Tisserand
& Moquet 1998) on artificial databases (points in M-space with Euclidean distance)
for various sizes n, dimensions M, and priors pg. The only meaningful parameter is
n; in particular, the dependence on M is minimal. Also, simulations yielded mean
search times virtually on the curve logn — 2 for n = 100 — 4000. Needless to say, this

is a very poor model for human behavior.

8.2 The Model of Cox et al

There is one fixed metric d* but the “hard decision” in the deterministic case is

replaced by a “soft decision” based on a sigmoid function:

d* (yi, yx) — d*(yj,yk)” )

g

Pijk = {1 + exp <

where ¢ is a “blur” (or “smoothing”) parameter. The case o = 0 corresponds to one

fixed metric and the case 0 = oo yields random answers. The posterior is

t

s=1

8.3 The IID Case

The conditional distribution of D;; given Y = y; is independent of 7k and hence
the metrics {D;;} are independent and identically distributed. (Of course p;;x still
depends on ijk.) The only case we consider is uniformly distributed coefficients

(A1, ooy Aar), so that l/ijk(ijk) o vol(ijk).

8.4 Dedicated Metrics

Whereas the answer probabilities p;;; evidently depend on the display pair ¢, 7 and the

target index k, there are various ways to make the distributions v;;; actually depend
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on t7k. One can, for example, weight the attributes depending on the observed

differences |DIF'F; m)| where

ijk
DIFFSY = d (g, yi) — d™ (y;,y0), m = 1,..., M,

making m more influential than m’ when |DIFF(™)| > |DIFF(™)],

One way is to choose one of the “pure” metrics d), m = 1,..., M, with probability
proportional to |D[FFZ§-TZ)|; thus v is concentrated on the subset {d*), ..., d™)}. We
shall refer to the corresponding answer model as “choose one feature.” It leads to a
closed-form expression for the answer probabilities and eliminates the need for Monte

Carlo estimation. Specifically, let F;; € {1,..., M} be the chosen metric; then, for
k # i?j?

|D[FF”7Z)|
DIFF”k <0}Em ) |D[FF m)|

ijk

[

1

M
Pk = DL P = UV = g Fiy = m)P(Fy = mlY = )
M

m=

Another way to incorporate the observed features distances into v;;; is to choose
the coefficients Ay, ..., A\ps independently, with A, uniform on [0, |D[FFZ-S-7Z)|], referred

to in the experiments as “matching on a linear scale.”

8.5 Matching on a Logarithmic Scale

People appear to be particularly influenced by very close matches - cases in which
either " (y;,Y) ~ 0 or d"(y;,Y) a 0 (but not both) for one or more attributes
m. Similarly, there is difficulty in assessing the relative importance of two features
m and m’ when D]FFZ»%) = D]FFZ%TZI). To see this, consider the situation in Figure
4. There are two attributes, size and brightness, say m = 1 and m = 2 respectively.
In the righthand case, the display y; matches the target ¥ = y; exactly. Thus,
dY(y;,yx) = dPD(y;,yx) = 0. Clearly the user chooses y;. In the lefthand case,
neither feature gives a very close match and the choice is ambiguous to many users.
However, the differences D[FF(,C) and D[FF(,C) are exactly the same in both cases

when size and brightness are measured on a linear scale, i.e., with Manhattan distance.
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choice 1 Choice 2 Choice 1 Choice 2

N []

[]

Target image Target Image

Figure 4: The target is obviously perceived as “closer” to Choice 2 than to Choice 1
in the righthand case, whereas for many people there is no clear choice in the lefthand
case; however, the two cases would be identical were choices based solely on relative

distances in size and intensity. This argues for measuring “closeness” on a logarithmic

scale; see text.
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One way to accommodate this is to choose the coefficients Ay, ..., Ay; independently
with A,, uniform on the interval 0 < A < \II(M]NZ»(J.,C)) for some positive, decreasing

function W, where
MING) = min{d"™ (g, y0), d™ (y;, 1)}

Another way, somewhat more transparent, is to introduce a logarithmic transforma-

tion of the basic metrics d(™):
5(m)(y,y') = ay, log (1 + ﬁmd(m)('y,y’)) ,m=1,.... M

where a,,, 3, are positive parameters, the range of values assumed by 3,,d"™

is large
compared with one, and the {a,,} can be used to scale and weight the attributes.
“Matching on a logarithmic scale” refers to this metric in the context of the IID
model.

Let AE;’;C) be the corresponding difference §0™) (y;, yp) — U (y;,yr), m=1,..., M.
We can express it in terms of the original factors DI F'F'and M IN as follows. Suppose
Agr;c) > 0. Then

1+ Brnd"™ (s,

DIFFG|
= aplog |1+ J o |
Bt + MIN;;
The ratio |[DIFF|/(Const.+ MIN) favors close matches at a given value of DI FF.

Example: Suppose «,, = (,, = 1 and that the brightness scale in Figure 4 is
{1,2,...,64}, with y;, y;, yr assuming the values 19,64, 49 respectively in the lefthand
case and 49, 64,64 respectively in the righthand case. In both cases the discrepancy
in brightness is the same, namely DIFF;;;, = 15, on the original scale. However,
Ajjr = 1 in the lefthand case and A;;; = 4 in the righthand case, which therefore
strongly favors the likelihood of choosing y; for any of the models above and coheres

with our perception of a less ambiguous situation.

8.6 Random Vote Switching

We can interpret the Cox model as one fixed metric together with display- and target-

dependent flip noise. In other words, p;jx = P(&;X:; = l|Y = yx) where the &; €
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{—1,+1} are conditionally independent with

P(&j=—1Y = y) = {1 + exp <|d*(yi’yk) ; d*(yj,yk)|>] B :

Consequently,

pe(ylx) >0, y € Wi(x)° (7)

where W;(x) is the set of previously displayed images along the path to x. In partic-
ular, p,(Y|x) > 0, where the posterior distribution is computed relative to the system
model A. This property acts as a safeguard against modeling errors because it pre-
vents the user from making choices which are deemed “impossible” by the system for
the user’s target, hence reducing to zero the mass on that image.

This advantage is not shared by the models in §§8.3-8.5. Consider the IID model
and let Aq, ..., Ay be i.i.d uniform on [0, 1]. Then

piik = Vijk(Dijk) (ZA DIFF ”k ) < 0) ) (8)

A similar expression holds if the coefficients are chosen independently on [0, |D[FFZ]7;:) 1]
(§8.4) with D[FFZ»(J-TZ) in the sum in (8) replaced by D]FFZ%?Z) D[FFZSZ)L It follows
that p;jr = 1 if D]FFZ%?Z) < 0 for each m = 1,..., M. However, if D]FFZ.%) ~ 0 for

each m = 1, ..., M the choice could be extremely ambiguous to the user, who might in-

deed then select y;. Similarly, the sampling of Ay, ..., Aps is irrelevant if D]FFZ-(]-T;) =0
for all but one of the coefficients, and similar remarks apply to the other models in
§8.4 and §8.5.

One remedy is random vote switching: When k # 1, j, the answers {[,r} are
reversed with a small probability ¢. Put differently, we “smooth” the answers by the

transformation
pijk — (1 = €)pijr + (1 — piji).

In this way, (7) holds for all the models in §§8.3-8.5.
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9 Randomness and Desynchronization

In order to capture the residual uncertainty in the answers once the target is specified,
we define the randomness of A to be the average over queries ¢ € () of the conditional

entropy of X, given Y. Specifically,

rand(A) = (;‘)_IZH(XUIY)

1<J

- <;‘>_1 > H(pijr)po(yr)

1<g3k#1,5

When po(y) = =+, this reduces to i > iix H(pijr) where ¢, = M and H(p) =
—plogp—(1—p)log(l—p). Small values of rand(.A) correspond to high determinism
and the deterministic case is rand(A) = 0. It is therefore reasonable to assume that
small values of rand(A) would contribute to choosing good queries provided the user
behaves according to A. Of course in reality - during interactive sessions with people
- the answers are not generated according to the model A employed by the system
for computing the posterior distribution and the corresponding expected information
gain from a new query.

The answer model used by the system then represents the predicted behavior of the
user and will be referred to as the “system model.” The actual answer statistics are
denoted by U = {pj;, } and referred to as the “user model.” Again, we are assuming
that the choices made by and among individuals are sufficiently coherent to allow
such an invariant representation. In particular, we are assuming that the likelihood
that a person answers “left” given a particular target and display does not change
from session to session or from user to user, so that p};, represents the fraction of
users with target Y = y; who choose “left” when presented with y;,y; for k # 1, ;.
The model U is unknown and difficult to estimate due to the large number (order
n?) of parameters and other factors. In our synthetic searches & = A (although one
could envision computer-generated responses according to a model & # A). In real
searches, U is our model of generic human behavior relative to some subpopulation.

Finally, the desynchronization between A and U is defined to be

1
desyn(A,U) = — Z pijk — Pl

c
" i<kt
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As with rand(A), the normalization renders this quantity independent of the size of
the database. “Full synchronization” means desyn(A,U) = 0. In synthetic experi-
ments we can estimate E4T and even P4(T = t) with high precision, whereas in real
searches we can only estimate desyn(A,U), Fy/T and Py (T = t) with low precision.
Finally, in regard to vote-switching: For “small” €, the effect is to increase
rand(A) and decrease desyn(A,U); however, in terms of the mean search time with

people, the net effect is favorable. In our experiments € = 0.05.

10 Experiments

We do not report experiments with real image databases, but rather with complex
scenes replaced by single geometric objects - polygons. This provides a controlled
setting for evaluating various models and parameters. Polygons are characterized by
M = 4 scalar features: size, number of vertices (3 to 9), brightness ([1, 2, ..., 255], and
a measure of “flatness.” The metrics d,m = 1,2,3,4, measure absolute difference
on a range of values normalized to [0, 1]. A sample of randomly generated polygons
was given in Figure 1. A database ) was constructed by randomly choosing the
normalized features. By way of a user interface, a randomly chosen polygon Y is
displayed - the bottom one in Figure 2. Thus, the user has the target ¥ “in mind”
in the very literal sense of having it persistently displayed, which is not altogether
realistic. The two polygons labeled “Choice 1”7 and Choice 2”7 are y; and y;; the user
answers by clicking on one of them and the search ends when either “Choice 17 or

“Choice 2”7 is Y.

10.1 Synthetic Searches

In simulations, the choices are based on very precise information, such as the exact
values of d™ (y;,y;) and d™) (y;,y;) for each attribute, which is clearly not available
to people.

In Figure 5 we display the estimated distribution of the search time T for synthetic
runs with n = 200 and the models from §8. These histograms were obtained by
generating several thousand samples from 7' for each model. The corresponding mean
search times (see Figure 6) are 8.5,8.0,7.3,7.2,6.5. This ranking coheres with that of
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Figure 5: Histograms of synthetic search times for several models

the five values of rand(.A), which are plotted against E47" in Figure 6. (Estimates of
rand(A) are based on 1000 triples ijk). In particular, the most deterministic model
is “matching on a linear scale” in which the distribution v;;;, actually depends on 73k,
and this model achieves a mean search time surprisingly close to the theoretical limit

of ET = 5.8 obtained by substituting n = 200 into (3).

10.2 Real Searches
10.2.1 Owur User Subpopulation

We collected data from a variety of people, some with modest exposure to mathemat-
ics and computers and some with a great deal of both. The results varied enormously.
Eventually we decided to limit our study to persons familiar with concepts such as
“polygon” and “grey level”. Each person was informed that the “system” would
interpret the answers as providing information about the four polygon attributes de-
scribed above, but told nothing about the various models. For each model, each
person made fifty searches, each time with a new target. Since completing a search
(i.e., having the target displayed) can take up to a few minutes, only a rather limited
amount of data was collected - approximately 300 searches per model. This accounts
for the roughness of the histograms in Figure 7. From user to user, the results were

consistent in terms of the relative performance among models but less so in terms of
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Figure 6: Dependence of performance on information content with synthetic searches.
The five symbols correspond to answer models as follows: “Cox et al” (O); “IID” (x);
“choose one feature” (+); “matching on linear scale” (x); “matching on logarithmic

scale” (o).
absolute performance, i.e., mean search times for a given model.

10.2.2 Parameter Estimation

All parameters were estimated by maximum likelihood estimation. The data was
obtained by extracting the individual choices from the actual searches over sessions
and models. Thus the data consist of a series of answers 1, xs,...,xzy € {[,r} to a
corresponding series of questions (is,js,ks),s = 1,..., N, where (i, j5) indicates the
two polygons displayed in question number s and k; is the index of the target at that
time. Now given a model §(0) = {p;;x(0)} depending on a parameter 4, and assuming

independent answers from trial to trial, the likelihood is

N
L 21, oo an) = [ [ TamtyPicion. (0) + Toamry (1 = pisor,(6))] -

s=1
Two key parameters are § = o in the Cox model and § = (34, ..., 84) in the logarithmic
model, which controls the importance of close matches. We also estimated the relative
overall importance of the four attributes for our subpopulation of users. This was

done by assuming that the coefficients A,, in the IID model were chosen uniformly
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Figure 7: Histograms of human search times for several models

in the intervals [0, w,,], m = 1,2,3,4 with wy = 1. The estimated values for shape,
brightness, size and elongation are, respectively, = (1.83 :1.50 : 1.22 : 1.00). These

a priori weightings were then used in the experiments with the 11D model.

10.2.8 Search Times

In Figure 7 we display the histograms of search times for the same five models as
before and the effect of desynchronization on performance is illustrated in Figure 8
by plotting EyT (the estimated mean search times for our user subpopulation) vs.
desyn(A,U) for the five models. The monotonic behavior in Figure 8 is present for
individual users as well.

Relative model efficiency is very different than in the synthetic case. In particular,
matching on a linear scale performs relatively worse in real searches than in the
synthetic case, probably due to poor synchronization resulting from high determinism.
The reverse is true for the Cox model (and good results are reported in (Cox et al.
2000) with real image databases). Naturally the dependence on o is strong. In Figure
9 we display rand(A) and desyn(A,U) for the Cox model as functions of o. Of course
rand(A) increases with o. The optimal degree of synchronization is comparable to
using the logarithmic metric. (The poor performance of the Cox model in earlier

experiments in (Geman & Moquet 2000) might be due to the choice of o.)
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See Figure 6 for the correspondence between symbols and models.
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Figure 10: Evolution of the posterior distribution over six queries for a database of

size 200. Results are given for one particular target, model and interactive session;

however, the rate of peaking is qualitatively similar from one experiment to another.

The vertical scale varies on the left and is constant on the right. The mass of one of

the polygons (the actual target, which was displayed at step seven) has grown from
1

505 = 0.005 at the outset of the search (top) to approximately 0.2 just prior to the

last query (bottom).

Finally, it is informative to observe the rate at which the posterior distribution
pe(y|x) “peaks” as a function of the iteration number . An example from one session
and one model is shown in Figure 10. In Figure 11 we contrast the peaking rate for
query selection by entropy minimization and random sampling from the posterior; in
this case, n = 100 and the posterior is displayed after t = 0,1,2,3,4 queries. Clearly

entropy minimization is more efficient, albeit more computationally intensive.

11 Discussion

The ultimate aim of any system model A is to maximize the flow of information from
the user to the system at each iteration. Since all the models have approximately the
same computational load, we regard the mean search time as a reasonable indicator

of efficiency. We have concentrated on two factors which reduce this flow, namely
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Figure 11: Evolution of the posterior distribution when queries are selected by entropy

minimization (left) and random sampling (right).

rand(A) and desyn(A,U). Small values of rand(A) often lead to fast peaking of the
posterior, but also occasionally to very long search times due to the user providing
answers deemed highly unlikely by the system model A given the actual target. In-
deed, the efficiency of all the models is reduced by perceptual limits; for example, it
is not clear that people can discern fine differences between the distance of the target
to the left and right images, especially when these distances are relatively large.

It is hardly surprising that synchronization correlates highly with performance in
real searches. And it seems reasonable to conjecture that the best result among all
models A would be achieved when desyn(A,U) ~ 0, i.e., with A ~ U. Also, the
values of rand(A) and desyn(A,U) for the Cox model suggest the dominant role of
the latter. In the case of poor synchronization, the effect of rand(.A) on performance is
not clear. But in synthetic searches, rand(.A) is also a good predictor of performance.

The role of synchronization is not symmetric with respect to the system and the
user. For any given user model U, the best performance of the system is achieved
with A = U. However, the converse is not true: Given that A is fixed, the user may
fare better with a model ¢« # A. One example is provided by choosing A to be the
Cox model with ¢ = 0.1. In synthetic searches K471 = 8.0, whereas FyT = 6.4 for
the Cox model with o = 0 (deterministic answers based on the metric d*). In this

case, the high determinism outweighs non-trivial desynchronization.

34



The natural mathematical questions are open, and perhaps difficult to resolve.
The situation is the same in other domains in which successive entropy reduction is
the basis for constructing tree-structured algorithms, such as in pattern classification.
It could be useful, for instance, to estimate properties of the distribution of 7" in the
synthetic case, even for n — oo and in a purely Euclidean setting. Or to estimate ET'
when one model drives the questions and another model drives the answers. It might
also be useful to bound the difference between the conditional entropy H(Y'|B:(x))
computed under the two models A and U starting from an estimate of desyn(A,U).
An intermediate step might be to bound ||p(.]x) — p“(.|[x)||, the divergence of the

model posterior from the true posterior, and then use the inequality

pP_
H(P) — HQ)| < —||P — Qlog I =C

n

where P, () are probability measures on {1,2,...,n}. The efficiency of query selection
should depend on the rate of separation between the two posteriors as a function of
search length ¢.

Experiments with real and heterogeneous image databases are preliminary. The
ones we have done - within the IMEDIA research group at INRIA-Rocquencourt -
involve standard features such as color and edge statistics with individual dimensions
on the order of 100. Elementary comparison search needs to be modified in order to
accommodate clustering of the images in ) into distinct groups. When the user is
presented with two images, both very different from his target, his answer is virtually
random. In searching for a forest scene, how does he choose between a calm sea and
a brick wall? Yet for certain metrics in D, the sea or wall might be much closer to
the forest image and hence the feedback is misleading. Simply allowing the user to
choose neither image (and updating the posterior by eliminating the two displayed
images and renormalizing) significantly reduces the mean search time.

Moreover, there appears to be an initial, inefficient, search for the right “cluster”
- the one containing the target - and then a rather efficient, within-cluster search
somewhat similar to that with polygons. One way to reduce the first stage is to
increase the number of images presented at each iteration. For instance, displaying
four images, and allowing the user to select any subset, reduces the average length of
the search. A more direct extension of the framework here is to display k images at

each iteration and ask the user to declare which, if any, is the target and otherwise
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which is closest to the target; hence there would be 2k possible responses and ideally
one would expect search times on the order of log, n, although efficient query selection
would evidently be a problem.

Finally, from one perspective we have put a magnifying glass over one aspect of
a large and diverse subject. Indeed, our analysis might appear highly “elaborate” to
practitioners since that adjective was applied in (Smeulders et al. 2000) to the less
rigorous Bayesian analysis in (Cox et al. 2000). Our motivation is that interactive
search i1s an important and inherently stochastic process, and yet much of the work
in image retrieval (as opposed to the more sophisticated state of text retrieval) may
not be amenable to a satisfying statistical analysis, due mainly to the complexity of
the interaction between the system and user. As the field “shakes out,” and certain
interactive protocols are shown to handle limiting factors such as large databases,
impatient users and the “semantic gap,” it should become clearer how statistical

modeling and reasoning can contribute to performance.
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