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Introduction
Determining lifetime-accumulated radiation dose is increasingly viewed as essential. Computational
phantoms containing dosimetric information, e.g. the extended cardiac-torso (XCAT) phantom [2], are
being developed, but they cannot adequately reflect variability between patients, especially for growing
children. Here, custom phantoms are made by manually segmenting a small set of organs from CT and
calculating a full-body registration to an adult XCAT [3] using large deformation diffeomorphic metric
mapping (LDDMM). The result is used to map anatomical and dosimetric data to the child (Fig. 1).

Figure: 1. The adult XCAT phantom (left) and customized pediatric phantom (right) are shown with transparency
and built up progressively from anatomical systems.

Methods
Full body mapping. We generated mappings between one of two adult templates (male, female), and
pedatric patients (24 male, 18 female) defined on a 256×256×520 2mm3 voxel grid. Patients’ volume
varied between 0.072 and 0.472 (mean 0.233) that of the adult. Images were segmented into 8 organs
(body, bones, brain, lungs, liver, kidneys, stomach, spleen), and 87 landmarks were placed automat-
ically [2] mainly on reproducible bony structures. Images were initially aligned based on landmarks,
linearly then deformably. Multi-channel (MC) LDDMM, which treats each organ as a separate image
on a common background space [1], was used to create dense mappings. To achieve robustness on this
variable dataset, a coarse to fine strategy was adopted. MC-LDDMM was run four times with decreas-
ing regularization in a manner that remains numerically stable, the final regularization being specified
by the desired accuracy. This sequence of transformations is shown in Fig. 2. This modification leads
to increased computation time, and as such paralellization of the algorithm was analyzed. A subset of
four patients was chosen for which mapping was repeated on 1, 2, 4, 8, 16, and 24 processors.

Figure: 2. The robust sequence of transformations used. Top to bottom: sagittal, coronal, and axial slices. Left to
right: initial placement, affine registration, LDDMM landmark, 1 - 4 iterations of MC-LDDMM

MC-LDDMM. The desired transformation minimizes the following over smooth velocity fields vt
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where, Ii1 and Ii0 are the ith (of M ) organs of the target and template, φt=1 is a diffeomorphism
generated by integrating vt from t = 0 to 1, and σ2

i describes the contribution of the ith channel to
the overall energy. The operator L = −γId + α∇2 where γ = −1 is fixed and α is varied, Id
is identity and ∇2 is the Laplacian operator, ensures smoothness of the velocity field and resulting
deformations, with largerα for smoother (more regular) deformations, and smallerα for more accurate
transformations. We use a gradient descent strategy, and the energy gradient can be computed as [1]
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where K is the operator inverse of L†L, | · | denotes determinant, D denotes the Jacobian, and ∇
the spatial gradient. The transformation generated by integrating vt from time t′ = s to time t′ = t

is denoted φs,t. The quantity J0i
t is the ith template channel transformed up to time t (= Ii0 ◦φt,0),

and J1i
t is the ith target channel transformed backwards from time 1 to time t (= Ii1 ◦ φt,1).
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Results
Transformations and phantoms. An example of the transformed organs used for MC-LDDMM are
shown as isosurfaces in Fig. 3. The result of the full body mapping algorithm for the same pediatric
patient is illustrated in the transformation between the left and right side of Fig. 1.

Figure: 3. Triangulated surfaces from an example deformed adult template (white) and target child (black).

Accuracy. Accuracy of mappings was quantified by measuring surface to surface distance at each
vertex along isosurfaces. Cummulative distributions are shown in Fig. 4, grouped into males and
females, organ by organ (brain is matched with the most fidelity and stomach with the least), and
patient by patient (accuracy for females is more variable). The algorithm is accurate typically to within
1–2 voxels (2–4 mm), and robust across this large and variable data set
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Figure: 4. Surface to surface distance cummulative distribution functions are shown to demonstrate the accuracy of
full body mapping. Left to right, seperated by gender, seperated by organ, separated by individual patient.

Computational performance. The four patients examined for quantification of efficiency are denoted
“small”,“med-small”,“med-large”, and “large”. The total computational time in hours, excluding
input/output (IO) operations, is shown in Table 1. Parallelization allows computation time to be
reduce from over a day, to only a few hours.

Table: 1. Total timing (in hours) excluding IO operations

Processors 1 2 4 8 16 24
Small 8.94 4.9 2.62 1.49 1.06 0.935
Med-Small 33.5 18.2 9.68 5.41 3.64 3.25
Med-Large 31.3 17.3 9.05 5.07 3.5 3.17
Large 28 15.2 7.92 4.47 3.1 2.8

The speedup factor and efficiency of parallelization are shown in Fig 5. 93.84% of the algorithm is
effectively parallelized, and efficiency remains heigh until beyond 8 processors are used.
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Figure: 5.a) Speedup due to parallelization (log scale), and b) efficiency of parallelization (semilog scale), for the four
patients examined.

Conclusion
The algorithm used here for generating full body maps involves a sequence of increasingly detailed
transformations between adult templates and child images. This procedure ensures the robustness
necessary to automate calculations across a wide range of pediatric patients. It comes at the price of
high computational cost, which fortunately can be mitigated with a parallel implementation.
This algorithm takes advantage of a powerful feature of diffeomorphisms. Their submanifold preserving
property allows a transformation calculated from a handful of segmented (Fig. 3) structures to be
accurately and smoothly applied to the thousands of anatomical structures defined in the XCAT
phantom (Fig. 1).
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