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Given observable anatomical images

the solution to the variational problem

gives rise to the optimal changes of coordinates

such that 

0.201 (±0.026)78.54 (±5.80)Beg
(LDDMM)

0.220 (±0.048)80.62 (±5.52)ChristensenDAT (n=5)
Control (n=5)
(MR data taken
from [8])

0.226 (±0.026)79.56 (±2.72)Beg
(LDDMM)

0.230 (±0.025)79.45 (±2.97)ChristensenSchizophrenia (n=5)
Control (n=5)
(MR data taken
from [7])

L1 error
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Results

Conclusion
The globally-optimal solution of the Beg (LDDMM) algorithm which gives rise to a metric distance between

biological shapes is no less accurate than the locally-optimal “greedy” solution of the Christensen algorithm
which does not define a metric distance.
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Introduction

We compare the results of two different implementations of large-deformation
diffeomorphic image mapping.

Computational Anatomy and Large-Deformation Diffeomorphic
Image Matching

In Computational Anatomy, the anatomic model is a quadruple (Ω, G, I, P), consisting of

the template coordinate space

G a subset of diffeomorphisms on Ω

I the orbit of anatomical imagery under P

P the family of probability laws of anatomical variation on I [1].

!" dR

Globally-Optimal Algorithm Implementation and Metrics for
Homogeneous Image Space

This is the large-deformation diffeomorphic metric mapping (LDDMM) solution
developed by Beg et al [4]. LDDMM is similar to the large-deformation diffeomorphic
image mapping put forward in [5] by Christensen et al (below), but in contrast to [5] the
arc length of the geodesic

connecting the two images under mapping defines a metric distance between two images
on I.

Locally-Optimal (“Greedy”) Algorithm Implementation

The Christensen algorithm discretizes the space-time continuum

thereby turns the solution of ODE into a sequence of time-indexed optimizations solving
for locally optimal velocity at each time and then forward integrating the solution. This
locally-in-time “greedy” algorithm does not give the image orbit a metric distance.
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Step 1.  Small-Deformation Landmark Matching
Landmarks are laid out according to AC–PC (global) and hippocampal (local) orientations.  The
initial alignment of the template and target regions of interest are based on these landmarks [6].

Methods
Subjects and Scans
• 5 matched pairs of schizophrenia and young control subjects

• 5 matched pairs of very mild dementia of the Alzheimer type (DAT) and elderly control subjects

• Magnetom SP-4000 1.5-Tesla Siemens imaging system with standard head coil

• 3D MPRAGE sequence

(TR = 10 ms, TE = 4 ms, flip angle = 30º, 1.25 mm section thickness, 128 slices, 256-mm field of
view, matrix 256 × 256, number of acquisitions = 1, scanning time = 5.6 min @ 1 × 1 × 1.25
mm3/voxel)

Step 2.  Large-Deformation Image Matching
Intensity-based diffeomorphic mapping is performed on the regions of interest via either algorithm.

Diffeomorphism hi

Coarse Registration TargetTemplate

Deformed Template Surface

Deformed Template

Template Surface

Landmark-Based Low-Dimensional Transformation

Image-Based Large-Deformation Diffeomorphic Mapping

Global landmarks (AC – PC orientation)

H

T

Slice 1
Slice 2
Slice 3
Slice 4
Slice 5

Local landmarks (hippocampal orientation)
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Accuracy Assessments

R: reference (manual) segmentation
with M tissue types (eg, gray
matter), with posteriori
probabilities pR(hn|In) 0 or 1

A: automated segmentation with
the same tissue types with
posteriori probabilities pA(hn|In)
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(manual)
segmentation
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The diffeomorphisms are modeled as evolution in
time, or a flow with an associated velocity
vector field that controls the evolution:

The forward and inverse maps are given by
ordinary differential equations (ODE):

the identity map

Jacobian matrix

the velocity vector field

Smoothness of the velocity vector field ensures that
the set of solutions to the ODEs is the subgroup of
diffeomorphisms (details given in [2, 3]):
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