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Metrics for Homogenous Image Space

One of the Holy Grails of Image Analysis is the construction of metric space
structure for families of images. In the emerging discipline of Computational
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metric space is a curved Riemannian manifold, with the metric length between T T e e
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structure allows the precise quantification of the shape and size of objects
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images 1 is an orbit under the group of diffeomorphisms G of the underlying SRR R D N R e I R R T

coordinate space. The set I is a homogenous space, with all images in the set being R o R R R R et L e R R R e R AR E TR R p s
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diffeomorphism between them. The group of diffeomorphisms ¢ is an infinite-

dimensional Riemannian manifold with the choice of a Riemannian metric in the /j"}'_&m—.

tangent space of the manifold. It is a metric space with the metric distance between (& » #'Is"

points as the length of the shortest path joining the points i.e. a geodesic on the ﬂ“““h—-i

manifold. The metric distance on the space of images is inherited from the metric
structure on the space of diffeomorphisms. Given any two images, and the
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Shown to the right are the result of computing metric distances between
images 1
I on the far left and I on the far right taken from normal and diseased canine heart,
Macaque brain cortex and 3D hippocampus volumes of an individual with
Schizophrenia and a Young control. The row of images show a sample of the
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Metrics for Neoplasm and
Signature Variability

Image analysis must deal with wegplasm 1.e, presence of
new structures such as a tumor, the presence of highly variable
clutter across images or variability due to lighting conditions and
texture variation etc. as shown in the images on the left. The metric
space structure must be extended to such non-homogenous image
spaces.

The metrics formulated for this setting allow, in addition
to a geometric transformation of the coordinate space, the image
values to@Hange from one image to another as a function of time
modelled as Jfy, H=I{  (y 4, §), allowing for creation or destruction of
structures in an image where the corresponding structures do not
exist iff thE other. This corresponds to construction of the metric in
the product space x with the metric distance between points I and
I to be: 1
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