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We study the well established di�eomorphic landmark matching problem central to the

emerging �eld of computational anatomy [1, 2, 3], emphasizing a point of view which enables

a new optimization approach and setting for stochastic shape models. The di�eomorphic

landmark matching problem is formulated as follows. Let 
 be an open, bounded subset

of R k and consider an N -tuple, x = (x1; : : : ; xN) of template landmarks in 
 and a

corresponding N -tuple of target landmarks y = (y1; : : : ; yN). We seek to �nd an optimal

di�eomorphism, � : 
 ! 
, which maps the template landmark con�guration onto the

target. As candidates, we consider only the family of di�eomorphisms, G, that are isotopic

to the identity via solutions to the ODE
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= vt Æ �t;

where for each t 2 [0; 1], vt belongs to a reproducing kernel Hilbert space, V , of vector

�elds on 
 with Z
1

0

jjvtjjV dt <1:

Let xi(t) denote �t(xi). The optimal di�eomorphism is chosen by �nding the time varying

velocity �eld v 2 L1([0; 1]; V ) minimizing the following energy functional
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The Euler equations characterizing the extremals of the energy can be shown to be equiv-

alent to the system (2) above top right, where K is the matrix reproducing kernel of V

having the property hK(x)u; viV = v(x) �u. Our main contribution is to take advantage of

the fact that, from system (2), the 
ow is completely determined by the initial conditions

xi(0) and ai(0) (or v0(xi)). In fact, (2) has a conservation of momentum physical interpre-

tation, with the initial conditions ai(0) representing the initial momentum [4]. We compute

the gradient of the energy functional (1) with respect to the initial conditions ai(0) and

implement gradient descent minimization. The top row in the right �gure illustrates a large

deformation example with N = 2, in which the landmarks trajectories must cross. The

template is in blue and the target is in red. The top left panel shows the initial conditions

resulting from the gradient descent minimization. The top right panel shows the landmark

trajectories computed via (2), and below it is a sampled sequence from the deformation


ow of a grid. Also shown to the right are 2D (above) and 3D (below) face examples (2D

data from AAM database [5], and 3D data from the Morphable Faces database [6]). The

left panels show the template con�gurations, with the 
ow sequence in the center panels

and the targets in the right panels.

Landmark trajectories and 
ow computed from ve-

locity at t = 0 via initial value ODE system:
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�1(x1 � �) + �2(x2 � �)

x1 � x2

�1a1(0) + �2a2(0)

An additional consequence of the initial value system is that it provides dimensionality reduction for shape statistics

[7] and active shape models [8] in the large deformation setting. The solutions to (1) are actually geodesics in G

(an in�nite dimensional Riemannian manifold), which induce a metric on the space of landmark con�gurations.

The metric distance in terms of initial momentum is given by

d(x; y) =
� NX
i=1

ai(0) � v0(xi)
�1

2

:

As well, the space of initial momentum allows us to overcome the non-linearity problem evident in active shape

models. The �gure on the left shows three landmark models from the AAM 2D data set [5]. We arbitrarily choose

the center model, �, as a hypothetical mean and left, x1, and right, x2, models as hypothetical eigen modes. The

top �gure is a resulting linear combination of x1 and x2 about �. Clearly, this linear combination produces a

con�guration which does not represent a face. The mouth appears above the nose and the structures run into

one another, etc. The bottom �gure is produced by taking the corresponding linear combination of the resulting

initial conditions, a1(0) and a2(0) which take � to x1 and x2, and applying (2) to compute the 
ow from the new

initial condition. The topological structure of the face is clearly retained.

We have experimented with mean shape estimation using a procrustean type algorithm. Consider a set of landmark

con�gurations fy1; : : : ; yMg:

1. Choose a template � arbitrarily.

2. Compute the di�eomorphisms from � to ym for m = 1; : : : ;M .

3. Set a(0) = 1

M

P
M

m=1
am(0).

4. Compute �1(�) via (2) using a(0) as the initial condition.

5. Set � = �1(�) and goto step 2.

Empirically, this algorithm appears to converge with mean estimates independent of the initial choice of template.
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