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Introduction

Cardiac disease is often associated with remodeling.
Ventricular shape and function is influenced by this remodeling.
Assessing left ventricular shape and motion at the population level requires
establishing anatomical correspondence using registration based techniques.
Cardiac magnetic resonance imaging (MRI) provides detailed quantitative data
about cardiac function and geometry.
Cardiac MRI data are sparsely sampled that is not optimum for intensity-based
registration methods.
Methods that rely on fitting a smooth surface to the segmented contours may
impose an artificial constraint to the registration process [1],[2].

We propose:
to study the feasibility of matching sparsely sampled cardiac MR volumes using
curve and surface matching in the context of large deformation diffeomorphic
metric mapping [3],[4].

Preprocessing

Subjects: Cardiac MR data from patients with familial cardiomyopathy (n = 5, 4
females, mean age of 50.4 ± 15.24 years). The in-plane resolution was
approximately ∼1.4 mm × 1.4 mm and thickness was of 8 mm with 2 mm gap.
Segmentation: Epi and endocardial contours of left ventricle (LV) were isolated using
Segment [5] software.
Breath Hold Correction: A 2D Euclidean distance-based matching approach was
used to correct for breath-hold related slice to slice motion using contour points from
3 different perpendicular planes: short axis (SA), horizontal long axis (HLA), and
vertical long axis (VLA).
Rigid aligment: Before performing nonrigid matching, we roughly aligned and scaled
the objects (curves and surfaces).
Template surfaces: The template surface is a triangulation of a binary volume, that
was obtained using shape averaging in a previous study [6] using intensity CT images
from 25 subjects.

Registration Methods

Nonrigid Alignment between Segmentations
Given two families of curves, Γ(0) and Γ(1) (with different number of points), we
would like to find an optimal transformation, say φ, such that φ(Γ(0)) ' Γ(1) via
minimizing the following objective function:

E(Γ, α) =

∫ 1

0
F (Γ(t), α(t))dt+

1

σ2
D(Γ(1),Γ(1))2 . (1)

The variables, Γ and α, are time dependent and the deformation cost function, F ,
is defined by:

F (Γ(t), α(t)) =
N∑

k,l=1

∫ ∫
αk(t, u)TK(γk(t, u), γl(t, v))αl(t, v)dudv . (2)

The matching term, D, is a Hilbert space norm [3] measuring the discrepancy
between the deformed template curves (Γ(1) at time t = 1) and target (Γ(1)).
K(p, p′) is a smoothing kernel function:

K(p, p′) = diag(g(‖p− p′‖), g(‖p− p′‖), g(z − z′))
with g(t) = exp(−t2/2a2) for some parameter a (where z and z′ are the
long-axis coordinates of p and p′). This ensures a uniform motion in the LV long
axis direction.

Surface to curves registration
Similarly in surface to curve registration we seek an optimal transformation that
maps a closed surface S(0) to a collection of curves (Γ(1)) via minimizing:

E(S, α) =

∫ 1

0
F (S(t), α(t))dt+

1

σ2
D(S(1),Γ(1))2 . (3)

The deformation cost is given by

F (S(t), α(t)) =

∫
S(0)

∫
S(0)

α(t, p)TK(S(t, p), S(t, q))α(t, q)ds(p)ds(q) . (4)

The kernel K is now chosen isotropic, such that K(p, p′) = g(‖p− p′‖)IdR3 with
g as above. The matching term, D, computes the sum of the integrals of the
squared distances between each point in each curve in Γ(1) and the deformed
surface S(1).

Measure of robustness (Four experiments on 5 subjects)
Matching high resolution template surface to complete target curve set.
Matching high resolution template surface to incomplete target curve set (removed
one plane).
Matching complete curve set extracted from high resolution template data to
complete target curve set (removed one plane).
Matching complete curve set extracted from high resolution template data to
incomplete target curve set (removed one plane).

Results

Nonrigid Alignment of segmentations

(a) (b) (c) (d)

Figure: (a-b): Correction of slice-to-slice misalignment in SA view due to breath-holding motion.(a): Before
correction. (b): After correction. (Blue and red : endo and epicardial surfaces from SA view, Cyan and
green: endo and epicardial contours from vertical long axis view, Pink and black: endo and epicardial
contours from horizontal long axis view. (c-d) Curve-to-curve matching using LDDMM. (c): LV contours
before curve matching (green: template contours, yellow: target contours). (d): LV contours after deforming
template subject contours (red) to match target subject (yellow).

Nonrigid surface to curve registration
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Figure: Surface-to-curve matching using distance-based LDDMM. (a): Surface template with target
contours. (b): After registration.(c): Map of the surface area ratio of triangulated faces in deformed template
relative to template superimposed on template mesh (scale is based on log10). (d): After registration using
projection of gradients on the first 24 eigenvectors of smoothing kernel. (e): same as (c) but for the
deformation estimated from (d). Grey wireframe represents high resolution triangulated mesh template.
Yellow contours are representing LV epi and endocardial regions from the MRI cross-sections.

Distance Error (mm)
I) Matching high resolution surface to the complete curve set (distance between the
removed cross-sectional curves to the deformed surface).
II) Matching high resolution surface template to the incomplete curve set (distance
between the removed cross-sectional curves to the deformed surface).
III) Repeating case (I) with the curve to curve matching.
IV) Repeating case (II) with the curve to curve matching.
V) Pre-registration distance between the complete curve set and surface template.
VI) Surface to curve matching error estimated by using the entire curve set as
opposed to using curves from a single cross section (case I)
VII) Curve to curve matching error estimated by the complete curve set

Experiments I II III IV V VI VII
Mean(SD) 1.67(0.70) 2.79(0.80) 1.37(0.47) 4.31(1.71) 3.24(0.17) 1.75(0.29) 1.15(0.14)

Conclusions

Surface to curve matching:
Does not rely on a predefined geometry.
Does not require same number of points for curves and surfaces.
Projection of gradient of objective function onto principal directions of smoothing
kernel reduces the over-fitting problem.

Curve to curve matching:
Does not require high resolution surface.
Sensitive to geometry coverage.

Both approach are robust with respect to the missing data.
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