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Introduction

Diffusion tensor magnetic resonance imaging (DT-MRI) probes and quantifies the anisotropic
diffusion of water molecules in biological tissues, making it possible to non-invasively infer the
architecture of the underlying structures. The measurement at each voxel in a DT-MRI image volume
is a symmetric second order tensor. Orientation of the principal eigenvector of the diffusion tensor 1s
known to align with fiber tracts. Matching D'T-MRIs 1s more complicated than matching scalar images
since DT-MRIs contain orientational information, which is affected by the transformation. Our
approach 1s to apply the theory of Large Deformation Diffeomorphic Metric Mapping (LDDMM) to
compute a geodesic path on the manifold of diffeomorphisms connecting two DT-MRIs which
transforms a template into target, computing the metric distances of the transformations required for
registration as a measure of the differences between template and target, and building probability
distributions describing variability of geometry of subjects in terms of the wvariability of these
transformations.
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Figure 1: Panels show how the template image deforms to the target image on the geodesic
path, with two images superimposed, blue the template and red the target.

Formulation

Let the background space Q be a bounded domain in RY and G a group of diffeomorphisms on Q.
Let the images be functions M: Q > R that associate to each point x in Q the diffusion tensor, a
symmetric second order tensor. The diffeomorphic transformations G are defined through the
solutions of the nonlinear Eulerian transport equation

o =v ((pt), @,(x)=x, tel0,1]

For each t, v, 1s a vector field on €2 which belongs to some Hilbert space V , which is constructed
using the theory of Reproducing Kernel Hilbert Spaces. And ¢, 1s called the flow associated to the
time dependent vector field v.. G acts on the set 1 of all images. For any M in Fand ¢ in G, let A, A,
and A, be the eigenvalues of M with A,2A,2);, and ¢, e, and e; be the corresponding eigenvectors.
The action is defined as follows[1]:
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Given two images M, and M,, the optimal matching ¢ between M, and M, is generated as the end-
point ¢ = @, of the flow. Estimation of the optimal transformation is done via the following
variational problem:

N 1, 2 2
y =argmin, JO“VI“th+ajgdist(¢.Mo,M1) dx

where

dist(p.M M) =| .M, ~ M, ||, =trace[ (p.M,~M,) (p.M,~M,)|

Conclusion

We have presented a method to match DT-MRIs via LDDMM of tensor fields. The optimal mapping
is the endpoint of a geodesic path on the manifold of diffeomorphisms connecting two tensor fields.
Finding the optimal mapping and the geodesic path is formulated as a variational problem over a
vector field. A gradient descent based multi-resolution multi-kernel-width algorithm is implemented.
We expect this method to be a useful tool for analysis of DT-MRIs and other images which have
similar properties.
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[ Gradient Descent Based Optimization J

AL
Rigid Resolution Resolution Resolution
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We calculated the first order variation of the energy function with respect to the vector field v. The

variational optimization is performed in a steepest descent scheme. The step size is decided by a line
search algorithm in the direction of steepest descent. To generate the map ¢ from the vector field v,
we use a second-order semi-Lagrangian scheme to solve the transport equation about ¢.

We performed a rigid transformation matching before applying the gradient descent scheme. A
hierarchical multi-resolution strategy is used in our algorithm to reduce the ambiguity problem and the
computation load. It is employed from coarse to fine, and results achieved on one resolution are
considered as approximations for the next finer level. We generate the image pyramid by reducing the
resolution from one level to the next by a factor of 2.

Experimental Results
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Figure 2: 3D tensor matching of two normal human brains. First column shows the fractional
anisotropy weighted color-coded orientation map of slice 30 of the template and the target
respectively. Second and third column show the tensor distribution of region A and region B
respectively. Template and target are superimposed with blue color the template and red color the
target. Top row shows the tensor distribution before matching; bottom row shows the tensor
distribution after matching.
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Figure 3: Comparison of the deformed template and the target for different LDDMM matching
schemes. Top left panel shows the histogram of the tensor difference at each voxel. Top right panel
shows the histogram of the fractional anisotropy (FA) difference at each voxel. Bottom left panel
shows the mean difference between corresponding principal eigenvectors in function of FA value.
Bottom right panel shows the histogram of the eigenvalue ¢, difference at each voxel.
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