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ABSTRACT. Non rigid deformations of patterns can be interpreted as the action
of an infinite dimensional group A on a given set P of patterns. Following Lie
group ideas, a small deformation can be well described by an element y of the
tangent space at identity T¢.A. Given a metric on T¢ A, which brings the cost of
a small deformation, we show that we can define on A a left invariant distance
d s which gives the distance between two arbitrary large deformations. We
are concerned with various topological and geometrical properties of 4. We
reformulate in a unified framework many pattern recognition tasks as non
linear variationnal problems on A. We show the existence of solutions to
these problems and finally, we propose a sub-optimal algorithm to solve three
important classes of pattern recognition problems through a gradient algorithm
on A whose convergence is rigorously established.
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1. INTRODUCTION

During the last decade, the use of deformable models in pattern recognition and
in pattern matching have became more and more usual. However, the theoretical
framework of this approach is not yet fixed and much of the mathematical work
is still to be done. At a formal level, the problem can be formulated as follows.
Assume that you have a set of “patterns” P and a set of “actions” or “deformations”
or also “transformations” 4 such that for each a in A and each f € P we can define
the deformation of f by a as a new element of P denoted af. A natural assumption
at this level is that 4 has a group structure so that we can define the product of two
elements a and a’' € A denoted aa’ and the inverse denoted a~! of an element a € A.
We should also assume quite naturally that A is acting on P i.e. a(a’'f) = (aa') f
and ef = f where e is the identity element of .4. Such a situation is quite common,
and as a first example, we can choose for P the subsets of R? (binary shapes) and
for A the group of the isometries of R? or the group of the affine transformations.
Actually, one needs often a larger group allowing non rigid local transformations,
to cover for instance the huge variability of biological shapes [7].

An important issue is to define an appropriate distance d4 on A inducing a
distance dp between the elements of P by

(1) dp(fi, f2) = inf{ da(e,a) | afy = f> }-

This approach is quite natural since the distance between two patterns should be
a measure of the amount of “deformation” needed to go from f; to fo. How-
ever, the symmetry property of the distance dp (dp(f1, f2) = dp(f2, f1)) is ful-
filled if d4(e,a) = da(e,a™!) so that a property of left invariance d4(aa;,aas) =
da(ay,a2)) or right invariance (d4(a1a,a2a) = da(a1,a2)) of the distance d 4 is
natural and attractive. Moreover, if d4 is left invariant, then (a,b)—da(a=!,b7!)
is right invariant so that we can focus on left invariant distances. If A is a finite
dimensional Lie group of transformations, then, choosing a metric on the Lie alge-
bra T, A and extending this metric on A4 by left multiplication, we can define the
associated geodesic distance which is left invariant. In the framework of deformable

models, this choice of a metric on T, 4 corresponds to our a priori on the cost of
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the small deformations and should be designed according to our precise application.
This approach, applied on infinite dimensional groups of transformations, has been
suggested by R. Azencott in [4] for shapes recognition.

However, for infinite dimensional group of transformations, two important dif-
ficulties arise. The first one is to define a Lie group structure on an infinite di-
mensional group of transformations and the second one is to equip this Lie group
with a left invariant metric for which we can define the associated geodesic distance
[12, 16]. There is in fact a third difficulty which is that we should keep in mind that
we want at the very end to have an appropriate numerical scheme to solve various

pattern recognition problems in this framework.

In this paper, we will assume that P is the set of the measurable functions from
a finite dimensional Riemannian compact manifold M without boundary to a finite
dimensional manifold X. This definition matches numerous examples. For instance,
the closed curves in R? correspond to the case M = R/Z (1 dimensional torus) and
X = R? (see [19, 17]). The case of the periodic grey-level images correspond to
M = R?/Z? (2 dimensional torus) and X = R. In both last case, X is a vector
space. However, more general situations arise if we work with images with bounded
grey-level values (X = RT or X = [a,b]) or with images where f(m) is an unitary
vector in R® i.e. X = S? representing for instance the direction in m of some
physical field. The fact that M is without boundary is a bit restrictive. However,
this restriction, only technical, could certainly be relaxed and simplifies the results

we will prove in this paper.

As group of deformations A, a natural choice is to consider the group Aut(M) of
the homeomorphisms on M with the action ¢f = fo ¢ for f € P and ¢ € Aut(M)
(note that one should consider on Aut(M) the product ¢¢' = ¢’ 0 ). However, this
choice may be too restrictive in some situations since the transformation does not
affect the range of f. For instance, in the case of closed curves in R?, f o ¢ is only a
change of variable which does not affect the geometric shape of the curve. Hence,
in order to modify the range of f, assume that there exists a finite dimensional
Lie group G acting on X by the action (g,z)—gz. In the case of closed curves,
one can choose G = R? with the action (g9,z)—g + z. In the case of positive
images X = Rt, we can choose as G the multiplicative group R} where gz denotes
here the multiplication in R. The case X = S? of images of unitary vector in R?
is more interesting since we can choose for G various groups of matrices acting
on S2. Now, if C(M,G) is the set of the continuous mapping from M to G on
which we have the group product given by the pointwise multiplication in G (i.e.
hh'!(m) = h(m)h'(m)), C(M,G) acts on P through the action (h, f)—hf where hf
is defined by

hf(m) = h(m)f(m) ; m € M.
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Now, putting together both previous actions, we will consider Ay = Aut(M) x
C(M,Q@G), and for any a = (¢,6) € Ap and f € P, the action of a on f will be
defined by

af =6(fo¢),

where on Ag we used the semi-direct product given by

aa' = (¢' 0 $,6(6' o 9)),
with a = (¢,0) and a' = (¢',0"). At this point, we see that A is not a Lie group,

even infinite dimensional. We could have chosen for A the space
As = Diff* (M) x C* (M, G)

where Diff*°(M) is the set of smooth diffeomorphisms on M and C*°(M,G) the
set of smooth mappings from M to G so that we could have seen A, as an ILB
(inverse limit of Banach space) Lie group as defined in [14] or also a smooth Lie
group in the sense of Frohlicher-Kreigl as in [9, 11] with Lie algebra

oo = X(M) x C®(M, ®),

where X(M) is the set of the smooth vector fields on M and C*° (M, ®) the set
of the smooth mappings from M to the Lie algebra & of G. However, we do not
want to restrict ourself to smooth transformations and one of the main point of this
article will be to look for group of deformations living between A, and Ag. The
principle of our construction will be the following: start from a norm | |, on the Lie
algebra Ao (= X(M) x C°(M, 8)) of Aw. Then for any smooth path t—Y; from
[0,1] to YA, define the integrated path t—a; in A, as the solution of the equation

formally expressed as

©) = a¥,

where ay denotes the left translation of y € 2., by the formal differential of the left
multiplication by a. Now, considering paths with finite length according to | |. i.e.
fol |Ys]eds < oo, we will define the sub-group of transformations 4 as the ending

points of all the integrated paths of finite length. Hence, formally,
v da
(3) Ap =inf{ a; | / lag £|eds <00, ap=¢€ }.
0

One should say here that the previous point of view is nothing but a generalization
to infinite dimensional Lie algebra of the construction proposed by R. Palais in [15]
for the construction of finite dimensional Lie group of transformations from a finite
dimensional Lie sub-algebra b of (M) x C*® (M, &). Here, the condition a; % €h
is replaced by the condition of finite length with respect to | |.. In our case, the
sub-group is parameterized by the choice of the norm | |, and the final sub-group

is infinite dimensional.
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Then, we will define on Ap the associated geodesic distance

! da
@ dn(es) =inf{ [ oy Selods [an = e, a1 =a }
0

However, at that step, the group Apg is nothing else under weak assumption on the
norm | |, than the connected component of the identity A¢_ of A,. However, this
group is not complete (as a topological space) according to the metric dg. This lack
of completeness could be a serious drawback in an analysis point of view if we want
to use some fixed point theorem or to get existence results for ordinary differential
equations on Ap or also for solution of variational problems arising naturally in
pattern recognition. Hence, in fact, Ap should be formally the completion (as a
group and not as a vector space!) of A% . Note that the completion of a group is
not well defined in a general setting. In fact, we will define the element of Ag, as
the values at time 1 of flow of time dependent vector fields living in the Banach
space (B, | |e) obtained by completion (this time, the usual completion of vector
space) of the Lie algebra 2, according to the norm | |.. The counterpart will be
that Ap will not have a smooth Lie group structure, since for instance, its formal
tangent space at identity B is no more a Lie algebra.

At this point, we would like to discuss briefly the beautiful work of D. G. Ebin
and J. Mardsen on the application of group of diffeomorphisms in the study of the
motion of an incompressible fluid [8]. They introduced the ILH Lie group D of
the smooth diffeomorphisms on a compact manifold M and the essence of their
method, following the lines of the work of V. Arnold in [2], is to “transfer the
problem from the classical equation to a problem of finding geodesics on the group
of volume preserving diffeomorphisms, to which the methods of global analysis and
infinite dimensional geometry can be applied”. They introduced the group D? of the
diffeomorphisms whose derivative up to the order s are square integrable (in charts).
They proved that D? has a strong structure of infinite dimensional manifold modeled
on an Hilbert space, and they consider on D® a weak left invariant Riemannian
structure given at identity by the integral of the pointwise scalar product (with
respect to the metric on M) of any two vector fields on M whose derivative up to
the order s are square integrable. Our approach, will be in a sense a dual approach,
since in our case the left invariant metric could vary greatly from an application to
another one, so that the metric will be in fact a parameterization of Ag and will
be in a sense a strong Riemannian metric on Ap. However, as a counterpart, we
will have only a weak differentiable structure on Ap.

In part 2, we precise the conditions on which we could give a rigorous meaning to
(2) and we deduce conditions on the norm | |, such that paths of finite length for | |,
in the tangent space at identity can be integrated. Then, we give a precise definition

of Ap and of the distance of dg and we prove in theorem 2.12 that (Ag,dg) is
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a complete metric space. Then, we show that even if Ap has not a Lie group
structure nor a differentiable structure in the usual sense, Ap can be equipped with
a weak differentiable structure modeled over a Banach space, but strong enough
to define the exponential mapping and a useful notion of differentiable real valued
functions. Moreover, we show in theorem 2.19 that there exists integral paths in
Ap for bounded and strongly Lipschitz vector fields (as defined in definition 2.18)
on .AB.

In part 3, we restrict ourself to the important case when | |, is an Hilbertian
norm. In this case, the sub-group Ap has a weak differentiable structure modeled
over an Hilbert space. On such Hilbert sub-group, we prove in theorem 3.7 that
there exist continuous geodesic curves between any two points in Ap . Moreover,
we show in theorem 3.8 that a wide class of variational problems useful in pattern
recognition (see below) admit a solution . This two results come from the weak
compactness of the strong ball in L?([0, 1], B), the space of square integrable time
dependent vector fields and from the continuity of the flow mapping under the weak
topology as proved in theorem 3.2. Finally, using again the fact that the tangent
spaces are Hilbert spaces, we show that given a differentiable real valued function
E, one can define the gradient VE and under some additional conditions on F, for
every initial deformation ag, the solution of the formal gradient evolution equation

(5) ‘Cil—’; —_V,E.
In part 4, we apply this result to three important problems of pattern recognition:
Template fitting: Assume that we single out a pattern f € P called the template
pattern. Let L : X —R* be a non negative function called the penalty function. The

problem of template fitting for the penalty function L is to find a € Ap minimizing

(6) /M L(af)dp + %dB(e,a)2

where e denotes the identity element in A, dp the left invariant distance on Ap and
4 is the normalized Riemannian measure on M. If @ is a solution of the problem
(we do not discuss for the moment the existence of such a solution), then f = af
will be called the fit of f according to L.

Patterns classification: Assume here that we single out fi,---, f,, p patterns
in P as template patterns. Now consider a new pattern f € P. We define the
similarity of fvwith fi by
@ St = jnf [ L(Fm), (@ )om))d+ 3dae,)”

aEAB
The value of L(z,z') is usually a kind of distance between z and z' which controls

the similarity between points of X. Now, considering the values of S (f, fi) for all
i€ {1,---,p}, we can classify f into one of the classes defined by the f;’s.
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Pattern matching: Keeping the notation introduced for the classification prob-
lem, we denote a; the element of Ap (if it exists) achieving the minimal value of
S (f, fi) for ¢ minimizing the values of the S (f, f;)’s. Indeed, if #; is the homeo-
morphism corresponding to @;, ¢; is a mapping from the points (m, f(m)) of the
new pattern to the points (¢;(m), f o ¢;(m)) of the template f;.

We will propose in this last part a sub-optimal solution to these three problems
based on a gradient algorlthm in Ap for the function E(a) = [,, L o L(af)dpin the case
of template fitting and E(a) = f,, L o f ,af)dp in the case of pattern classification
and pattern matching. Thls sub-optimal solution can be achieved numerically in
various situations as will be shown in a forthcoming paper [18].

2. THE ABSTRACT CONSTRUCTION OF Ap

Let us recall briefly the framework and the notations. Let M and X be two
finite dimensional manifolds. We assume that M is compact, without boundary,
connected and Riemannian. We denote P the set of all the measurable functions
from M to X. The set P will be called the space of patterns. Now, let G be a finite
dimensional connected Lie group and & be its Lie algebra. We assume that G acts
on X and the action of g € G on z € X will be denoted gz. Now, let C(M,G) be
the set of all the continuous functions from M to G and Aut(M) be the set of all
the homeomorphisms on M (we will use on Aut(M) the product ¢¢' = (¢’ o @)).
One can define on C(M, @) a group product (6, 8')—06" for all § and ¢’ in C(M, Q)
where 6" = 06" is defined by 8" (m) = 8(m)6'(m) and gg' denotes the product on
G. Moreover, C(M,G) acts on P through the following action

Of)(m) =60(m)f(m) ; meM, 8 C(M,G), feP.

Consider the set A9 = Aut(M) x C(M,G) which will be called the set of the
actions. For each element a € Ay we will denote ¢ its component on Aut(M) and
0 its component on C(M,G). As usual, the semi-direct product (a,a’)—aa’ on A
for all a = (¢,0) and o' = (¢',0") is defined by

aa' = (¢'04,6(6'0¢))

where o denotes the composition of functions. One verifies easily that for this
product, Ap is a group acting on P through the following action

af =6(f9),

where a = (¢, 6).

As suggested in the introduction, we will consider also the subgroup A, =
Diff>° (M) x C*(M,G) of Ap which has a structure of smooth infinite dimensional
Lie group (see [11]) whose Lie algebra is given by 2o, = X(M) x C*(M,®). Let e
be the identity element of As. This element is defined by e(m) = (m, 1) for all
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m € M where 1 denotes the identity element in G. Throughout this work, y will
usually denote an element of A, = T, A and u (resp. z) its component on X(M),
(resp. its component on C*°(M,®)). For any a € A, the left multiplication L,
on A given by L,(a') = aa’ is a smooth mapping (see [11]) whose differential at

identity is given by
de(La)(y)(m) = (u o $(m), dig (Lom) (2 0 9)(m)))

where a = (¢, h) and d;(L,) denotes the usual differential at 1 of the left mul-
tiplication by ¢ € G on G. In order the simplify the formulation, we will use the
notation ay to denote d.(L,)(y) and 6(z o ¢) to denote m—rdi, (Lg(m))((2 0 ¢)(m))
so that we get the new definition

(8) ay = (uo ¢,6(z 0 ¢)).
Hence, the tangent space T, Ao at any point a € Ay, can be expressed by
TaAoo:{ay|y€Ql00 }

Throughout this work, for all Y € C*°([0,1] x M,TM x &), we will denote U
its component on T'M and Z its component on & so that U € C*([0,1] x M, T M)
and Z € C*([0,1] x M,®). As usual, for ¢t € [0,1], ¥; denotes the function in
C>®(M,TM x &) defined by Y;(m) = Y (¢t,m) for any m € M.

Definition 2.1. Let 7 be defined by
T ={Y e C®(0,1] x M, TM x &) | Y; € AVt € [0,1]}.

Let C([0,1] x M,M x G) (resp. C*([0,1] x M, M x G)) be the set of the
continuous (resp. smooth) functions from [0,1] x M to M x G. For any A €
C([0,1] x M, M x G), we denote ® its component on M and © its component on
G so that ® € C([0,1] x M, M) and ©® € C([0,1] x M,G). From the classical
theory of O.D.E. on smooth manifolds, we deduce that for all Y € 7°°, there exists
A e C>([0,1] x M, M x @) such that Ap = e and

0A
(9) E = At}/ta

that is q)o = IdM, @0 = 1G and
2 (t,m) = U(t, &(t,m))
90 (t,m) = O(t,m) Z(t, (t,m)),

where Y = (U, Z) and A = (®,0). Obviously, for any ¢ € [0,1], A; € Aco- At this
stage, we can define through (9), the flow mapping A : T*—=C([0,1] x M, M x G)
such that for all Y € 7°°, A(Y) = A, where A is the solution of (9). Our approach,

as presented in the introduction, will be to extend the flow mapping A to a separable

(10)
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Banach space LY = L'([0,1], B) of time dependent vector fields where (B, | |.) is
the completion of 2., for the norm | |.. Then, the subgroup Ap will be defined
by Ap = { A1(Y) | Y € L} } where A;(Y) is the value at time 1 of the flow.
Therefore, we will need first some control lemmas on A given in the following
section. At first reading, the reader is invited to skip the proof of the three above
lemmas and to go directly to main consequences given in proposition 2.10.

2.1. Control lemmas on the flow mapping. Let (, )% denotes the metric
at point m € M and VM denotes the Riemannian connection on M. Let lg
denotes the identity element in G and let (, )fG be a scalar product on & (people
unfamiliar with Riemannian geometry and Lie group theory could usefully refer to
[6] and [10]). We extend this scalar product on each tangent space T,G through
left multiplication so that G becomes a Riemannian manifold. We denote V& the
Riemannian connection on G.

Definition 2.2. (i) For all u € X(M), we define
fuleo = sup{ ({u(m), u(m))y)"/* | m € M},
|Vuloo = sup{ |VMu|o | v € X(M), [v|eo=11}.

(ii) For all z € C*(M,®), we define

l2lee = sup{ ((2(m), 2(m))$ )"/* |m e M },

Vzlo = sup{|VOz|e | v € X(M), [v|w =11},

where 2’ = V&2 is defined by 2'(m) = dmmz(v(m)) and dp,2 is the differen-
tial of z at m € M.

Definition 2.3. Let dj; and dg denote the distances associated with the Rieman-
nian structure on M and G. We define the distance dy on Ag by
do(a,a’) = sup du(p(m),¢'(m)) + sup du (¢~ (m),(¢") " (m))

meM meM

+ sup dg(6(m),6'(m)),
meM

where a = (¢,6) and o' = (¢',60'). From the completeness of M and G, we deduce
that dy defines on Ay a metric for which Ag is complete. Now, we define on the set
C([0,1], Ag) of the continuous functions from [0, 1] to (Ag, dp) the distance D by

D(A, A") = supdy(4s, AL).
s<1

Here again, the space C([0,1],.Ao) is complete for the distance D.
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Let K¢ be the constant defined by
K¢ = sup{ |VgWG(1G)|1G | w,Wees, |w|1G = |W|1G =1 }
where W< in the left invariant vector fields on X(G) defined by W € ®.

Lemma 2.4. Let Y € T and denote A = (®,0) the solution of (9). For all m,
m' in M and all t € [0,1], we have

(11) dar(@y(m), Be(m')) V dne (871 (m), 87 (m')) < dag (m, m)eo 1705/,

t t
(12) dc(84(m), ©r(m')) < das (m, m')( / [V 2, oods)elo 70 =t Ke 2lewts,
0

Proof. Let p € C*°([0,1], M) be a smooth path such that p(0) = m and p(1) = m/.
Let A = (®,0) € C([0,1] x [0,1], M x G) be defined by

A(t, s) = A(t, p(s))-

Using covariant derivatives, we get

ds

Hence, if r = (3$ 6$)M we get 20 = (L (%), §)~M < 2|VUi|eor, so that

95 95/ Bt o
applying Gronwall’s lemma we get

0% dp ¢
<=
(13) 1G5 < 50 exn( [ VUi,
and
t 1
(14)  dar((t,m), B(t,m")) = das (B(2,0), B(£,1)) < edo [VVul= / |j—p|ds.
0 S

We deduce the same inequality for dar(®;*(m), ®; *(m')) since for a fixed ¢, ®;*
is the value at time ¢ of the time reversed velocity field U given by [73 = —-U;_, for
any 0 < s <t _

Considering now %, we get using covariant derivatives and the left invariance
of the metric on G

s

D (80\_D (00) _ . _ G B(s. )¢
(15) E(g> _E(E> _@(V%_TZt—i-Vé;lBgZ(ta‘I’(S,t)) )’

where for all W € &, W& denotes the left invariant vector fields defined by W.
Now, let r; = (22, %)G, we get from (15) 28 < 2r1/2|V Z;| 0| 22| + 2r K| Zt|oo-
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Since rg = 0, we deduce that /ry < fo IV Zu|oo| 2 |exp f Ka|Zy|odu')du, so that
using (13) we get

(16) dg(O(t,m), O(t,m')) <
t u t 1 dp
/|VZu|ooexp(/ |VUu:|oodu’+/ KG|Zu:|oodu’)/ 19, 4.
0 0 u o ds

Since (14) and (16) are true for an arbitrary smooth path on M from m to m', we
get (11) and (12). Thus the proof is complete O

Lemma 2.5. Let Y = (U, Z) be in T and let A = (®,0) be the solution of (9).
Then A € C([0,1], Ao) and for any 0 <t <t <1 we have

tl o tl
dO(At,At,)§2(/ |Us|oods)edo WU&'wdu/ | Zs| oo ds.
t t

Proof. Obviously, for all t € [0,1], A; € Ax. Moreover, for all 0 <t <t <1 and
all m € M, we get easily

,
(17) dar (B (m), By () < / Usloods,

(18) de(04(m), O (m)) < / | Zuleots.
Now, using inequality (11) in lemma 2.4 and inequality (17), we get
dy (7' (m), 85 (m)) = du (25" (8w (87 ' (m))), @' (m))
< dys (B (87 m)) el U < / " Uulds)els T
t

Considering the supremum of the above inequalities over m € M, we get the re-
sult O

Lemma 2.6. Let Y = (U,Z) and Y' = (U',Z') be in T and let A = (,0)
(resp. A' = (®',0")) be the solution of (9). Then for all t € [0,1] and allm € M,
we have

(19) dar (B¢(m), By (m)) V dar(®7 ' (m), (8;) ™' (m)) < K (1),
(20) dg(©¢(m),0;(m)) <

/ ([¢7 (19 Zuloe V[V ZiLoo) K )] efu Ko l=vZul)td g,

where
t t
=/ (U — U’)u|oo€fu VUt oo VIVU, loodt’ g
0
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Proof. Consider Y € C>([0,1] x [0,1] x M,TM x &) defined by Y (s,t,m) =
Y (¢t,m) +s(Y'(t,m) — Y(t,m)). As usual, we denote U its component on TM and

Z its component on &. There exists A on C*([0,1] x [0,1] x M, M x @) such that

% = .Ztﬁ We denote ® its component on M and 0 its component on G. Using

covariant derivatives, we get

(21) 2(6$> :(U'—U)to$+(VéUt+sV

dt % o3 N(U —U)t> od.

e
ds

Let r; = |2 "t |2. We deduce from (21) and the equality % = 2(% (3—q>), %)g that

] os

% < 2A|VUwo V VU o)1 + 2T = Uloo /-

Applying the Gronwall’s lemma to /7, we get finally

(22) |5_‘I’| < /t v — U|ooe‘f"t VUl VIV (ot g
0s 0
so that dar(®:(m), ®,(m)) = dur(®(0,t,m),®(1,¢,m)) < K(t). Using the same
argument than in the proof of the lemma 2.4, we deduce the same inequality for
dyr(®;7 1 (m), (®})~'(m)). Thus, (19) is proved.
We turn now to the proof of (20). We have

D (806 D (606 D /~ ~
(23) E(a_) WT(E) = 5 (0:2,)
o 5 7 G
= ®t ((Z’ _ Z)t od,; +V%Zt +V6;1%

2(37 t’ 5)G) )
where EVG in the left invariant vector fields on X(G) defined by W € &. Let
re = |%2¢|2. We deduce from (23) that

or 5. 0P >

P <2 (12" = Z)iloo + IV Ziloo| 22| | VF + 2Kl Zaloor

ot Os
Hence, using the upper bound (22) of |§| and the fact that [sZ + (1 — 5)Z' | <
|Z]oo V2|00, we get

80

@4) 15 (s, tm)| <

t t ! !
/ 1(Z' = Z)uloo + (Y Zuloo V [V 2} 00) K ()] e)u Ko (2 l=ViZ0s )bl g
0

Finally, since dg(0(m), ©}(m)) = de(0(0,t,m), ©(1,¢,m)), integrating over s, we
get the last result so that the proof is complete. [
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2.2. Definition of Ag.
Definition 2.7. Let LY, (M,TM x &) be defined by

L, (M, TM x &) = { y: M—TM x & | y is mesurable , moy = Idy },
where 7 is the canonical projection from T'M x & to M.

Definition 2.8. Let (B,] |.) be a Banach subspace of L{y (M,TM x &). We say
that (B, | |e) is admissible if it satisfies the following hypothesis:

H1: The Lie algebra 2 is a dense subspace of (B,| |.). Moreover, the
topology induced by | | on s is weaker than the usual C* topology.
H2: There exists K > 0 such that for all y = (u, z) € 2, we have

[]oo + [VU|oo + 2|00 + V2|00 < Kyle,

From now, we consider a fixed admissible Banach space (B, ]| |¢).

Notation 2.9. We will note LY = L°([0, 1], B) the space of the measurable time
dependent vector fields from [0, 1] to B. Moreover, for all p € [1, +o0], we will note
L% = L*([0, 1], B). The usual norm on L% will be denoted || ||,.

Remark 1. Since the topology induced by | |, is weaker than the C* topology on
s, we deduce that (Ueo,| |e) is separable and 7°° C C([0,1],B) C L% for all
p € [1,00]. Now, since 2, is dense in (B, | |.), we deduce that(B,| |.) is separable
as well as L, for p € [1,00[ and that 7°° is dense in (L%, || ||,) for all p € [1, oo[.

Remark 2. Note that the Banach space (B,| |.) can be identified with the com-
pletion of ™A for the norm | .. Moreover, the condition (H1) and (H2) depends
only on the behavior of | | on 2 so that the condition of admissibility is in fact
a condition on the choice of a norm | |, on A. The condition on | |, is not restric-
tive and will be easily checked in most of the particular cases (see for instance the
discussion at the end of the paper).

Proposition 2.10. Let A : T*—C([0,1], Ao) be such that for allY € T, A(Y)
is the solution of (9). Then,

(i) there exists K > 0 such that for allY and Y' in T
DAY),A(Y")) < K||Y = Y'||s KUY+ 1)

(i) the application A is Lipschitz, uniformly on bounded set, for the norm
[| [l on T and the distance D on C([0,1], Ao),

(i) since (C([0,1],.Ao), D) is a complete metric space, A has an unique
extension on L.

Proof. The proof is a straightforward consequence of lemma 2.6 O
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Definition 2.11. From proposition 2.10, one can define an application a : L} —.A4g
by a(Y)(m) = A(Y)(1,m) for all Y € L, and all m € M.

We can state the main result of this section.

Theorem 2.12. Let (B,| |.) be an admissible Banach space. Let Ap be the subset
of Ao defined by Ag = { a(Y) | Y € L} }. Then, the set Ag is a sub-group of Ao.
Moreover, if dg : Ag x Ap—RT is defined by

inf{ ||V, |Y €Lk, aY)=a'} ifa=e,
dg(a,ad') =

dp(e,a=1a) otherwise,

where a~! is the inverse of a in A, then the application dg defines a left invariant
distance on Ap for which (Ap,dg) is complete.

Proof. To prove that Ap is a sub-group of Ay, let us first introduce some notations.
For all Y and Y’ in L}, we define Y xY' € L} by

(Y *Y")e = 2(Yarli<iya + You_1/2Li>1/2)-

Moreover, for all Y € Lk, we define S(Y) € Ly by S(Y); = —Y1_¢+. Note that
Y % Y"||s = [¥]l1 + [[Y"||: and that [|S(Y)|[s = |[Y]]s. For all ¥ and Y" in Lk we
have

(25) a(Y xY') =a(Y)a(Y') and a(Y)a(S(Y)) =e.

Indeed, using a density argument, it is sufficient to prove the result for Y and
Y' € T°°. The proof of the first equality is then straightforward. For the second
one, one just have to check by derivation that

(26) ASY))AY ) =AY )15 t€0,1].

Hence, we get that Ap is stable for the product and the inverse. Since e € Ap, we
have proved that Apg is a sub-group of Ag. Let us show that dp is a distance. From
proposition 2.10, we get that do(e,a) < Kdg(e,a)eX8(&:0) 5o that dg(e,a) = 0
implies that a = e. Now, from (26), we deduce that for alla, o’ € Ag and allY € L}
such that o’ = aa(Y’), we have a = a’a(S(Y")). Since we have ||Y||; = ||SY)|]1
we deduce that dg(a,a’) = dp(a’,a) and dp is symmetric. Finally, let a, o’ and
a" be three points in Ap and let Y and Y’ be in L} such that o' = aa(Y) and
a" =d'a(Y’). From (25) we get

a’" =aa(Y)aY') = a(Y xY’).

Since ||Y *Y'||1 = ||Y]]1 + ||Y'|]1, we deduce immediately that dp satisfies the

triangle inequality so that dp is a distance.
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We will prove now that Ap is complete. Let us first introduce a family of
operators on IL}B. Consider the sequence (tx)ren defined by ¢, =1 — 2% For all
p, q € N such that 0 < p < g, we consider the application M, ,: (LL)??—L}

q—1

Mp’q(Y;), ) Y:1—1) = Z 2k+1Yk (2k+1 (t - tk))ltk§t<tk+1 .
k=p

One easily verifies that for p < ¢ < r we have the following properties

(27) a(Mp,q(Yp, -+, Yy-1)) = a(Yy) - --a(Yy-1),

r—1
(28) 1My, (Y, Yoot = My (Y, Ygm) |l = ) |1Vl
k=q

Let now (a,)nen be a Cauchy sequence in Ag. We assume that ) dp(an,any1)
is finite. Thus, there exists a sequence (Y;,)nen in L such that > [[Yall1 < +00
and apt1 = ana(Y,). Since the sequence (an)nen is bounded in (Ag,dg), we
deduce from proposition 2.10 (i) that there exists K’ > 0 such that do(an,an+p) <
K'dp(an,an+p). Hence (an)nen is a Cauchy sequence in (Ag,dp) so that there
exists G € Ao such that do(aeo,an)—0. From equality (28), the limit in ¢ for
fixed pin LY of M, 4(Yy, -+ ,Y,_1) exists. Let Y, be this limit. From equality (27)
we deduce that as, = apa(f/,',). This last equality shows that as, € Ap and that
dp (oo, ap) < 33 ||Y|l1. The proof is complete O

Remark 3. Since a(Y) is invariant under the time change Y} = 22(¢)Y) 4 for any
smooth strictly increasing time change from [0,1] to [0,1] and any Y € LL, we
deduce easily that for any p € [1, +00]

Ap={aY) | Y €Ly } and dg(e,a) = inf |[Y][,.
Yelk,

We end this section by proving that the topology induced by dy on Ap is weaker
than the topology induced by dp.

Proposition 2.13. There exists K > 0 such that for all a and o' € Ap, we have
do(a,a') < Kdg(a,a')exp(K (dg(a,a’) + dg(e,a))).
Proof. Let do be the metric on A, defined by
do(a,a') = sup du(¢(m),¢'(m)) + sup dg(6(m),8'(m)),
meM meM

for all a = (¢,6) and o' = (¢',0') € Ag. Then, we deduce from proposition
2.10, that there exists K > 0 such that for any a € Ap we have Jo(e,a) <
Kdg(e,a) exp(Kdg(e, a)). Moreover, one easily verifies that do(a, a') = do(e,a"'a’)
(this is not true for do) so that do(a,a’) < Kdg(a,a')exp(Kdp(a,a')). Hence, it

is sufficient now to control sup,,c (¢~ (m), (¢')~(m)) by a right hand term as in
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the proposition to get the result for any a = (¢,0) and o’ = (¢',60') € Ap. However,
using successively lemma 2.4 and lemma 2.5, we get that there exists K > 0 such
that

du (671 (m), (¢') 7 (m)) < dpm (s~ (m), 67 (P o (¢') 7 (m)))
< dp(p o (¢")"H(m), m) exp(Kdp(e,a))
< Kdg(a,a') exp(K(dg(a,a’) + dg(e,a))),

so that the result is proved. O

2.3. A weak differentiable structure on Ag.

2.3.1. Tangent spaces. The differential of the left multiplication L, on A, at iden-
tity can be extended through the expression (8) to any a € A4y and any y € B by
the same formula

ay = (uop,0(zo9)); a=(4,6) € Ao, y = (u,2) € B.
Hence, we will note for any a € Ap
T.Ap={ay|yeB}.

The vector space T, Ag will be considered as the tangent space of Ap so that y—ay
will be a mapping from T.Ap to T, Ap transforming Eulerian velocity fields to
Lagrangian velocity fields. However, for any arbitrary admissible Banach space B,
Ap cannot be equipped with an usual structure of manifold modeled on a Banach
space so that we use the notation JN“GAB and avoid the usual notation T, Ag. Now,
we can equip Ap with a natural left invariant metric if we define on T,IA B the norm
| | such that y—ay becomes an isometry

|ay|a = |y|e; y € B.
Therefore, (JN“GAB, | |o) becomes a separable Banach space for any a € Ap.
2.3.2. Ezxponential.

Definition 2.14. (i) Let j: TVEAB—HL}B be defined by j(y): = y.
(ii) Let exp : T.A—Ag be defined by exp =aoj.
(iii) For all a € Ap, we define exp, : T, Ap—Ap by exp, (y) = aexp(a~'y).

Remark 4. The notation exp comes from the fact that for all y € 2., for all
m € M, the application t— exp(ty)(m) € C*(R,G x M) satisfies

exp(0y) = ¢ and 5 (exp(ty) (m) = (exp(ty)y)(m),
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so that t— exp(ty) is a morphism from R to Apg. More generally, for all a € Ap, all
y € T, A and all m € M, the application t— exp, (ty)(m) € C°° (R, G x M) satisfies

exp,(0y) = a and %(expa(ty)(m)) = (exp, (ty)y) (m),

2.3.3. Differentiable applications. In spite of the fact that we have only a weak
notion of differentiable structure on Ap, we will define the differentiability for
functions on Ap

Definition 2.15. Let E be a function from Ap to R

(i) We say that E is differentiable at a € Ag, if E o exp, from the Banach
space TQAB to R is differentiable at 0 € TQAB in the usual sense. We will
use the notation d, E to denote do(E o exp).

(ii) We say that F is differentiable on Ap if E is differentiable at any point
a€ Ag.

2.3.4. Important examples. We are concerned here by a relevant example of differ-
entiable applications in the context of pattern recognition.

Definition 2.16. (i) Let R = M x G on which we consider the metric
defined for all 7 = (ry,72) € R by (w, w’)f = (wy, w’l)f,vf-l—(w% wé)i where
w = (w1, ws) and w' = (w},w)) are elements of T, R =T,, M x T,,G.
(ii) For all g € C*(R,R), we define

Vgl = sup{ |V¥g(r)| [T € X xR },
[VEVHgle = sup{ [VEVH#g(r)| | (r,w) € Rx TR, |w| <1},

where V¥ is the Riemannian connection on R.

Theorem 2.17. Assume that the action (g,z)—gx is C? and let f be a C? pattern
ie. f€C?*(M,X).

(i) Let L € C?*(X,R) such that |VE| + |VEVEl| < 400, where | €
C?(R,R) is defined by I(r) = L(rof(ry)). Then, the function E : Ap—R
defined by E(a) = [,; L(af)dp is differentiable on Ap and for all a € Ap
and all y € T, Ap

LEW) = [ (VMi(@), 1) dn
M
(i) Let L € C*(X x X, R) such that sup,¢ x (|VEl|oo +|VEVEL | o) < +o0.

where | € C*(X x R,R) is defined by l(z,7) = L(z,r2f(r1)) and I, by
l(r) = l(z,r). Let f € P such that f(M) is relatively compact. Then the
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function E : Ap—R defined by E(a fM f,af dp s differentiable on
Ap and for all a € Ap and y € TaAB

duE(y) = /M (VRI(F,a), y)"dp

Remark 5. In part (i), the assumption on the relative compactness of f(M) is just
to ensure that L(f, af) is integrable.

Proof. Since part (ii) implies obviously part (i), we will proved only the second
part.

Let a € A, y = (u,2) € A, m € M and assume that |yl < 1. Now,
consider the applications r = (ry,r2) € C*([0,1], R) and ¢ € C?([0,1],R) defined
by r(s) = exp,(sy)(m) and ¢(s) = I(f(m),r(s)). We have dq = (VH#, j:) , and

d*q dr g dr
(29) 2 = <v le d) + (VE, %<£>)

R, . .. .
where £ is the covariant derivative on R. Since

ds
DR (dr\ _ (DM (dr\ DO (dr
ds \ds) \ds \ds )’ ds \ ds ’
ddle = u(ry) and d“ = roz(ry), we get dI:I (‘fj;) = VuMu( 1) and dSG (‘3;) =
(V8 2+ T 2)%), 50 that |B(8)] € (Vo + + Koz + 1V +lo) o <

Kly|2. Moreover we have |2 |? = |r;2(m)[? + |u(r2)|? < |y|2. Thus we deduce from
(29) that |dds"| < Mly|?, where M = K sup,cx (V|0 + |[VEVEL|w) and K
depends only on M, G and | |.. Hence, by integration by parts we get

1 2
()~ 0) = 10 < [ (1= 5\ s < M

Since £(0) = y(m), 34(0) = (VF, y(m))" and

|/ <VRZ= y)Rdﬂ| < sup |VRlz|<x>|y|a=
M zeX

we get the result. The proof of the theorem is complete [
2.4. Integration of vector fields on Ag.

Definition 2.18. Let F be a vector fields on Ap i.e. an application from Ap to
T Ag such that F(a) € T, Ap for all a € Ag.

(i) We say that F is bounded if there exists K > 0 such that

sup |F(a)|, < K.
aEAB
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(ii) We say that F' is strongly Lipschitz if there exists K > 0 such that for
all @ and o' in Ap we have

la=*F(a) — (a')"'F(a')|. < Kdo(a,a').

Since dy(a,a’) < Kdg(a,a') on bounded set in (Ap,dp) (cf proposition 2.13), if
F is strongly Lipschitz, then F'is Lipschitz in the usual sense.

Theorem 2.19. Let F' be a bounded and strongly Lipschitz vector field on Ap. Let
F: Ap—>T.Ap by defined by F(a) = a~'F(a). Then there exists p € C([0,1], AB)
such that

(30) p=A(Fop).

The equation (30) is nothing more than an integrated version of the formal

evolution equation

E =Fop.
Note that since p is assumed to be in C([0,1],.Ap) and since F' Lipschitz, we have

Fope([0,1],B) C Ly and equality (30) is well defined.

2.4.1. Proof of the theorem 2.19. We will use an iterative scheme. We will built a
a sequence of approximates p, € C([0,1], Ag) by induction:

(i) For all ¢t € [0,1], po(t) = e,

(ii) pni1 = A(Y,) where Y, = F(p,,).
The sequence p,, is not defined until we have proved that Y;, € LY. However, for p €
C([0,1], Ag), we have F o p € C([0,1], B) C LL. Moreover, A(Y) € C([0,1], AB)
for all Y = Fop. Indeed, note that if Y € C([0,1], B), then forall 0 < s <t < 1 we
have dg(A(Y)s, A(Y)s) < f: |Yy|edu. Hence, the sequence (pp)nen is well defined.

Lemma 2.20. The sequence (pn)nen converges in (C([0,1], Ag), D).

Proof. Using proposition 2.10 and the fact that F' is bounded, we deduce that there
exists K > 0 such that do(pnt1(8), pn(t)) < K [y |E(pn)—EF(pn1)|eds. Hence, if we
denote r,(t) = sups<; do(pn+1(s),Pn(s)), we get that there exists K’ (independent
of n) such that r,(t) < K' fot rn—1(8)ds, so that r,(1) < (Kl,)n ro(1), and the proof

— n:

is complete. [

From the previous lemma, we get that there exists ao, € C([0,1], Ag) which is the
limit of a,,. To prove that a, is the solution of our problem, we have to show that
as € C([0,1],Ap). The key argument is the following.

Lemma 2.21. The sequence (Y, )nen is a Cauchy sequence in ]L}B.

Proof. Since F is strongly Lipschitz, we have ||V, 1 — Yy|l1 < Krp(1) where r,, is

defined in the previous proof. Hence the proof is complete. O
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From the previous lemma, we can define Y, as the limit of Y, in L} so that
000 = A(Ys). Moreover, using again the fact that F is strongly Lipschitz, we get
that there exists K > 0 such that ||F0ae — Yeo||1 < KD(an,as0) so that we obtain
that Yoo = F 0 aco. This complete the proof of the theorem.

2.4.2. Convergence of the Cauchy approrimates. Let 0 =tqg <t; <---<t, =1be
a subdivision denoted o of the interval [0,1]. We define the Cauchy approximate
associated to ¢ of as by

e a?(0) =e,

e a’(t) = exp,o(,) ((t - tk) F(a (tr)) for ty <t < tips.
The path a is obtained through the approximation of F'(a”(t)) by F(a°(t},)) for
t € [tr,trt1[. We will show that there exists K > 0 such that

(31) do(ag7a00) < KlO’l,

where |o| = supg<j<p (tk+1 — tk)-

Indeed, let Y7 = Z;é F(a® (tr)) 1t <t<ir,,- We easily check that a” = A(Y7).
Hence, since F is bounded, we get from the proposition 2.10 that there exists K > 0
such that

do(ace (),a” (£)) < K / 1B (aco(s)) — Y7 (s)]ds

gK/O 1F(ams(s)) —F’(a"(s))|eds+K/0 1B (a”(5)) — Y (5)]ds.

Now, since F is strongly Lipschitz, we get first that there exists K > 0 (indepen-
dent of o) such that |F(a’(s)) — Y?(s)|. < K|o| and |F(ace(s)) — F(a”(s))]e <

Kdy(ax(s),a’(s)). Then, using Gronwall’s lemma, we obtain the inequality (31).

3. HILBERT SUB-GROUPS

In this part, we are concerned by the interesting particular case where the Banach
space B is in fact an Hilbert space.

Definition 3.1. Let (B,]| |.) be an admissible Banach space. We say that Ap is
a Hilbert sub-group of Ag if there exists a scalar product (, ), on B such that

lyle = ({4, y),)"/? for all y € B.
Finally, defining the scalar product (, ), on T,Ap by

(v, y"), = {a 'y, a7 y),,

we get that for all y € T, Ap, lyla = ((y, 9) )2
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Hilbert sub-group are of particular interest for several reasons. The main one
is that the space L% becomes an Hilbert space and we can deduce from the weak
compactness of the strong unit ball, the compactness for the metric dy of the strong
balls around e in Ap for the metric dg. If fact, we will proved a stronger result
since will prove that the flow mapping A : L2 —C([0,1],Aq) is continuous for
the weak topology on L%. From this, we will deduce easily the above result of
compactness but also the existence of geodesic curves for the Riemannian structure
on Ap and the existence of solution of some variational problems arising from

speech recognition.

3.1. Continuity for the weak topology on L% of the flow mapping. Let us
state precisely the result.

Theorem 3.2. The flow mapping A : L% —C([0,1], Ag) is continuous for the weak
topology on 1% and the metric D on C([0,1], Ao).

Proof. The proof is split in two propositions proved in the next section. We will
show first in proposition 3.3 that the image of a strong ball in L% by A is relatively
compact in C([0,1], Ap) through an Arzela-Ascoli argument. Then, in proposi-
tion 3.4, we will show that A has a closed graph ie. if ¥,, = Y in L% and
D(A(Y,),A)—»0then AY)=A. O

3.1.1. Proof of the result.

Proposition 3.3. Let r > 0 and B(0,r) = { Y € L% | |[Y|l» < r }. Then,
A(B(0,7)) is relatively compact in C([0,1], Ao), D).

Proof. Since ||V < r for all Y € B(0,r), we deduce from lemma 2.4 that there
exists K7 such that for all Y € B(0,r), all t € [0,1], and all m,m’' € M

(32) dp(®4(Y)(m), ®(Y)(m")) + dM(‘I’t(Y)_l (m), ‘I’t(Y)_l (m'))
+dg(Hy(Y)(m), Hy(Y)(m")) < Kidp(m,m').

Now, there exists also an R > 0 depending only on r such that for all Y € B(0,r),
all t € [0,1] and all m € M we have dg(lg, H¢(Y)(m)) < R. Since the metric
on G is left invariant, the geodesic balls on G are compact. Hence, there exists a
compact Ko C M x G such that

(33) AY)(M) C Ky; t€][0,1], Y € B(0,r).

From (32) and (33), we deduce using Arzela-Ascoli’s theorem that X = { A;(Y) |t €
[0,1], Y € B(0,r) } is relatively compact in (Ao, dg). Hence, to prove the lemma, it
is sufficient (using a second time Arzela-Ascoli’s theorem) to show that { A(Y) |Y €
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B(0,r) } is an uniformly equicontinuous family in C([0,1], Ao) i.e. to get a control
uniform in m € M, Y € B(0,r) and |t —¢'| of

(34)  dp(24(Y)(m), @ (Y)(m)) + dpr (B (V) (m), @pr (V) (m))
+ da(Hy(Y)(m), Hy (Y)(m)).

Using Cauchy-Schwartz inequality and property (H2) of the norm on B, we get a
K(r) > 0 such that

dy(®:(Y)(m), @ (Y)(m)) + da(H(Y)(m), Hp (Y)(m)) < K(r)\/[t' —t].

Moreover, we get also that dus (@4 (Y) o ®;(Y)1(m),m) < K(r)/|t' —t| for all
0 <t <t <1 so that using (32) we get the

dnt (27 (Y)(m), @u (Y) ™! (m)) < K(r)/|t' — .
Hence the uniform equicontinuity is proved and the proof is complete. O

Proposition 3.4. Let (Y,)nen be a sequence in L%, let Y € 1% and A € Ap such
that

Y, — Y and D(A(Y,),A) — 0.

n—-+o0o n—-+oo

Then,
A(Y)= A

The previous proposition shows that the graph of A is closed for the weak topology
on L% and the metric D on C([0,1],.4). The idea of the proof is quite simple.
For any fixed time ¢ and any starting point (mq,ho) € M X G, then the integral
curve associated with an element Y € 1% is a continuous linear mapping in Y.
Obviously, this is not true for an integral curve on a manifold but holds in a chart.
Therefore, one can expect that the weak convergence in L% is sufficient to identify
A and A(Y).

The proof will be split in two preliminary lemmas on the properties in a chart
of integral curves associated to the flow mapping. Let (Q1, f1) (resp. (Qa2, f2)) be
a chart from the atlas of M (resp. of G). Now, let wy (resp. ws) be a relatively
compact open set of M (resp. of G) such that wy C Wy C Q4 (resp we C Wz C N2).
We assume also that there exists R > 0 such that for all m,m’ € w; and all
h,h' € wy, there exists p; € C*°([0,1],w;) and py € C*°([0,1],ws) such that

dp>

—|du.
dulu

1 1
(35) dyr(m,m') < R/ 19PL1 4y, and de(h, 1) < R/ |
o du 0
For all n > 0, let

Cp={v=0n,7) € C([0,7], M x G) [ 1([0,7]) Cwr x w2 }.
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Let p = dim(M) and ¢ = dim(G). For all 0 < 6 < 7, all o > 0 such that to+7n < 1,
all v € C,, we define a linear mapping 1%2? from L} to R? x R? by
5 5 5
15) = ([ o fs Wlto+ s () ds, [ oy () Z(t0 + 8,71 (4))ds),
for all Y = (U, Z) € L.

Lemma 3.5. Let g > 0 and to > 0 such that to +n9 < 1. There exists K > 0
such that for all0 <n <o, all Y € LY and all 0 < § <, it holds that

(i) for all v € C,, we have
59 (¥ ) [rexra < K|V ]]1,
(i) for all v and ~' € C,, we have
150 (Y) = 50 (Y ) o xrs

4
< K (sup(d (30(6),35(5) + s (09, 4(6)) [ Wiyl

Proof. Since wy X w3 is a compact set in Q; x 5, there exists C' > 0 such that for
all (m, h) € w; X wy, all u,u' € T, M and all w,w' € TG, we have

|dm f1 () |rr < Clufm, |dn f2(w)[ra < Clwln,
(36) and
|di f1(u @ ) |re < Clufm|t!|m, |dj f2(w & w)|re < Clw|p|w'|n.

Then, for all v € C; and all Y € L}, we have

[
00 cis < C [ (Uslow + | Zele)ds.
0

Since the norm | |, is admissible, (i) is proved.

Now, let Y € 7% and v,v' € C,,. For all 0 < s < 1, we deduce from (35) that
there exists p; € C*°([0,1],w:) and p2 € C*°([0, 1], w2) such that das(y1(s),71(s)) <
R [|%| and dg(72(s),74(s)) < R [ |22|. Moreover, we have

D dpr
- < -
| (U o + 5,0)| < VU ec] 221,
and
D dp>
—(p2 Z(t, < Zsloo + K| Zs|oo)|—|,
| (22t + 5,22))| < (VZsloo + K| Zeloo)| |
where

Kg= sup{ |v8WG(1G)|1G | w,W € &, |W|1G = |w|1c: =1 }7
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and W¢ is the left invariant vector fields on G associated to W. Hence, using (36),
we get

|dy, (5) F1(U (o + 5,71(8)) — dyr (5) fr(U (to + 5,71 (5))[re <
CR(|Us|oo + [VUs|)dar (71(5), 7 (5)),

and

|dra(s) 2 (72(8) Z (o + 5,72(5)) — doyy () F2(15(5) Z (t0 + 5,75(8))[re <
CR((Ka + 1)|Zs|oo + |V Zs|oo)da (72(5), 72(s")-

Integrating over s, we get (ii) so that the proof is complete. O

Lemma 3.6. Let n > 0 and to > 0 such that to +n < 1. Let y€C, and Y € L};.
Assume that there exists m € M such that Ay (Y)(m) = v(0). Then (i) and (%)

are equivalent:

() Atgru(Y)(m) = y(u) for all 0 <u <,
(it) 1o (Y) = A(u) — 4(0) where ¥ = (f1 071, f2 0 72)-

Proof. (i) = (i3) : If Y € T°°, (ii) is nothing else than an integrated version of
(10) in a chart. Now, if Y € L}, let (Y,,)nen be a sequence in 7 such that ||Y,, —
Y||1—0. For all n > 0, we define 4™ € C([0,7], M x G) by 7"(s) = A¢y4s(Yn)(m).
From proposition 2.10 we get that

(37) lim D(A(Y,),A(Y)) = 0.

n—oo

We deduce from (37) that supg<,<, da (73 (5),72(s)) + dm (77 (s),71(s))—0. Hence
" € C, for sufficiently large n. Using (i) = (i7) for 4" and Y;, we get
(

lim I0%(Y,) = lim 4"(u) — 5"(0) = 4(u) — 5(0),

n

n—oo n—oo

for all 0 < u < n. Moreover, from (i) and lemma 3.5, we get that

lim 15%*(Y™) = llo(Y),

n—oo
so that (i) = (¢4) is proved.

(1) = (¢) : Let o' € C([0,n], M x G) defined by v'(s) = Ay +s(Y)(m). Let
so=inf{ s <n|s>0, v(s) #7'(s) }. Assume that sop < 7. We will prove that
we get a contradiction. Changing ¢y in tg + sg, we can assume that sg = 0. There
exist 0 < n’ < n such that ' € C,y. Now, let h € C([0,7'],R) be defined by

h(s) = 17(s) = ' (s)|rrxra,

where 4" = (f1 071, f2 03). We get from (i) and (¢) = (¢%) that for all 0 < u < 7/,

u
h(u) = |12 (Y) = 159 (Y) |roxgs < K / Yiots|eh(s)ds
0
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Since h(0) = 0, we deduce that h(u) = 0 for all 0 < u < 7’ so that y(u) = v'(u) for
all 0 < u <7n'. This contradicts s = 0. [

Proof. (proposition 3.4) First, notice that since Y,, — Y, there exists R > 0 such
that [|Y]]2 < R and ||Yn|]2 < R for all n > 0. Now, applying proposition 3.3,
we deduce that (A(Y,))nen is a relatively compact sequence in C([0,1],.4o), D).
Let (A(Yn,))r>0 be any converging subsequence. There exists A € C([0,1], Ag)
such that D(A,A(Y,,)) — 0. We should prove that A = A(Y). Let m € M
and to = inf{ t > 0 | A¢;(m) # A:(Y)(m) }. Assume that ¢ < 1 and denote
(mo,hg) = Agy(m) = Ay (Y)(m). We consider a chart (1, f1) (resp. (Qg, f2))
and a relatively compact open set wy C Wy C Q1 (resp. ws C Wy C (22) such that
mg € wy (resp. hg € we) and (35) holds. Since there exists K > 0 such that

dM(mO; (I)tg—i-u(Yn)(m)) + dG(hO;Hto—i-u(Yn)(m)) S K/Ou |Yn|eds S K\/'L_LR;

there exists n > 0 such that A 44 (Ys)(m) € w1 X wy for all 0 < u < 7. Hence
Atgiu(m) € w1 X wy for all 0 < u < n. We will see that if y(s) = Asy+s(m) for all
0 < s <7, then I2%(Y) = 4(u) — 4(0) for all 0 < u < n where § = (fi o1, f2 0 72)
so that we will deduce from lemma 3.6 that A; 4,(m) = As4u(Y)(m) for all
0 < u < n which contradicts ;5 < 1. Indeed,

L (Y) = LY = Yo) + (15" (Vo) — L350 (Vo)) + 1% (Vo)

where " (s) = A¢4s(Y")(m) for all 0 < s < 5. Since I2* is continuous linear
mapping from L} to R? x R? (so also on %), we deduce that

lim Zfo"(Y™ — ) = 0.

o b =)
Moreover, using lemma 3.5, the fact that ||Y™||; is bounded, and the uniform
convergence of Y™ to 7, we deduce that

lim (I2o*(Y™) —1!%) (Y™)) = 0.

k— oo

Since from lemma 3.6 we have lfy",:“(Y") = y(u) — y7(0), we get the result. [
3.2. Existence of geodesics and weak compactness. In the next theorem,
we state the most important consequences of the theorem 3.2. We will see that
through the flow mapping at time 1 i.e. a, we get on Ap the good property of the
weak topology in L%. In order to emphasize this correspondence, we will call the
weak topology on Apg the topology given by the metric dy and the strong one the
topology given by dp.
Theorem 3.7. Let Ap be an Hilbert sub-group of Ag.

(i) Let a € Ap. Then, there exists Y € L% such that

a=a(Y) and [[Y|ls = [[Y][y = dp(e, a).
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(i) Let r > 0 and let B(e,r) = { a € Ap | dp(e,a) < R } be the strong
closed ball in Ag. Then B(e,r) is compact for the metric do.

(i) The application a—dp(e,a) is lower semi-continuous for the metric dy
on Ag.

Proof. Since (iii) is a straightforward consequence of (ii) we will only detail the
proof of (i) and (ii).

(Proof of (i)) Let K = {Y € L% | a(Y) = a and ||Y||2 < 2dp(e,a) }. The set K
is non-empty and from theorem 3.2, we get that K is a compact set for the weak
topology. Then there exists a sequence (Y, )nen in K and Y € K such that Y,—Y
and ||Yy||2—dB(e,a). Hence

dp(e,a) < [[Y|lL < |[Y]lz <liminf ||Yy|l2 < dp(e; a),

so that the proof of (i) is complete.

(Proof of (ii)) Let (an)nen be a sequence in B(0,r). From part (i) of the theorem,
we deduce that there exists a sequence (Y,,)nen in L% such that for all n € N we
have a(Y,) = a, and ||Y,||2 = dB(e,a,) < r. Then extracting a subsequence
weakly converging in L% towards an element Y, we deduce from theorem 3.2 that
there exists a subsequence of (a,)nen converging for the metric dy to a = a(Y).
Moreover, one have dg(e,a) < ||Y||1 < ||[Y]|2 < r so that a € B(e,r) and the proof
of (ii) is complete. O

The equality ||Y||2 = ||Y||1 means that |Y;|e keeps for almost every s € [0,1] a
constant value so that t—A(Y"); should be interpreted as a geodesic curves in Ag
from e to a. Using the left invariance of the metric on Ap, we deduce that for any
a € Ag, t—d'(Y), is a geodesic curve from a' to a’a so that we get from theorem
3.7 the existence of a geodesic curve between two arbitrary points in Apg.

One should notice here that we have proved before that Ap is complete as
a metric space for the distance dg. We known (Hopft and Rinow theorem, see
[6] p343), that for any finite dimensional Riemannian manifold, such a property
implies the existence of a minimal geodesic between points. The previous theorem
shows that we can get such a result in our infinite dimensional setting. This should
suggest that one could define an exponential mapping Exp from the Hilbert space
(T.As,(, ),) (given by the completion of £(M) x C*®(M,G)) to Ap which should
be onto. This contrast with the fact that the exponential mapping exp on Ap
considered as a Lie group is not generally onto. However, this is until now just a
conjecture since we should established first a regularity result on the geodesic curves
to map any geodesic curve with its velocity at the starting point. The reader will
find in the subsection 4.1, a discussion about the role of Exp in a problem of control

related to our applications to pattern recognition.
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3.3. Existence of solution to some variational problems.

Theorem 3.8. Let Ap be a Hilbert sub-group. Let E : Ap—Ry be a continuous
function for the distance dy on Ap. Let R : Ry — R4 be a non decreasing function
such that R(x)— + 0o as x— + co. Let W : Ap—R, be defined by

W(a) = E(a) + R(dB(e, a)).
Then, there exists a € Ap such that

W(@ = inf W(a).

Proof. From theorem 3.7 (iii), we deduce that W is lower semi-continuous for the
metric dg on Ag. It is sufficient to prove that the level sets are compact. However,
for any A > 0, if (an)nen is a sequence in Ap such that W(a,) < A, then, using
the fact that E is nonnegative and the condition on the limit of R at infinity, we
deduce that dp(e, an) is bounded. Since the strong balls are compact according to
theorem 3.7 (ii) and that W is lower semi-continuous, there exists a subsequence
(@n,)k>0 and a € Ap such that dy(ap,,a)—0 and W(a) < liminf A(a,,) < A. O

This last theorem gives a general existence result of a minimizer on the group Ag
for a large class on variational problem. We will see below (corollary 3.9) that the
theorem covers the problem of pattern matching given in the introduction under a
weak condition on the function L arising in the “external” energy part (as usual
called in the active contours framework).

Corollary 3.9. Let Ag be an Hilbert sub-group of A. Assume that the action on
X (g,2)—gx is continuous and let f be a continuous patterni.e. f € C(M,X). Let
LeC(X xX,R) and f € P such that f(M) is relatively compact. Now, consider
the function W on Ap defined by

. 1

(38) W (a) :/ L(f,af)du + §dB(e,a)2.
M

Then, there exists & € Ap such that

W(@ = inf W(a).

Proof. We deduce from theorem 3.8 that it is sufficient to prove that the function
a—= [, L(f, af)dp is continuous for the distance dg on Apg. Since f is continuous
and M is compact, f(M) is a compact subset of X. Moreover, let B be a bounded
subset of Ap for the distance dg. We deduce that Bg = { h(m) | m € M, a =
(h,$) € B } is bounded in G. Since G is complete, Bg is relatively compact in
G. Now, using the continuity of the action, we get that the set Bx = { gz | g €
Bg z € f(M) } is relatively compact in X. Moreover, for all a € B and all m € M,
(af)(m) € Bx. Hence, since f(M) is relatively compact and L € C(X x X,R),
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we deduce that Bg = { L(f(m), (af)(m)) | m € M } is relatively compact in R so
that Bg is bounded. Finally, since for each fixed m € M, a—L(f(m), (af)(m)) is
continuous for the distance dg, for any a € Ap and any sequence (ap)nen in Ap
such that dg(a,a,)—0, considering B = { a, | n > 0} U {a}, we deduce from the

dominated convergence theorem that

| oFanpidu [ L(Faf)an
M M
so that the result is proved. O

3.4. Gradient descent. For Hilbert sub-groups Apg, the tangent spaces are sep-
arable Hilbert spaces so that for any differentiable application E : Ag—R, one can
define the gradient of E.

Definition 3.10. Let Ap be a Hilbert sub-group of Ay and let £ : Ap—R be
a differentiable application. Then for any a € Ap, we denote V,E the unique
element of T, Ap such that for all y € T, Ap we have d,E(y) = (V,E, U)o

For pattern classification and recognition tasks, we will have to consider non
linear evolution equations on 4p defined by Z—‘; = —V,E. More generally, we have
to look for integrability conditions of vector fields on 4p. We come back to our
important examples of differentiable applications introduced in theorem 2.17.

Proposition 3.11. Assume that Ap is a Hilbert sub-group of Aoy and that the
action (g,z)—gz is C?. Assume that E : Ap—R is defined as in theorem 2.17 (i)
or (ii). Then the gradient field VE is bounded and strongly Lipschitz.

Proof. Note that it is sufficient to prove the result for £ : Ag—R defined as in
theorem 2.17 (ii). We use the notation of the proof of the theorem 2.17. Let
a€ Ag and y € T,Ap. Since

(39) daE(y)] < | /M (VR1(F,0), )] < s9p 9"l

we deduce that |V,E|, < sup,cx |V¥l;|e so that VE is bounded. We want to
prove now that VE is strongly Lipschitz. Let a and a’ be in Ap, let m € M, let
yeT.Ap and let p € C*>=([0,1], M x G) such that p(0) = a(m) and p(1) = a'(m).
Let ¢ € C'(]0,1],R) be defined by ¢(s) = (VEI(f(m), p(s)), p(s)y)™ where p(s)y
denotes (u(p1(s)), p2(s)z(p1(s))) with p = (p1,p2) and y = (u, 2). One computes

%L = (T VH(Fm), p(s)), p(s)y)" + (VT Om), p(s)), T s} "
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. R
Since |55 (p(s)y) | = (V4 u,pa(8)(V 7 + VO g )| < Klyle| 21, we get
9| < Mlyle| 9, so that

(VF1(f(m), a(m)), (ay)(m))" = (VFI(f(m),d'(m)), (a'y)(m))"
S M|y|ed0(aa al)a

where M = Ksup,cx(|VEl|o + |[VEVEL,|s). After integration under u, we
obtain finally that for all y € TEAB we have |d, E(ay) —do E(a'y)| < M|y|.do(a,a’)
sothat |a='V,E—(a')"'V—d'E|. < M|y|.do(a,a’). Thus, VE is strongly Lipschitz
and the proof is complete. O

4. APPLICATION TO PATTERN RECOGNITION

We turn back to the problem of pattern classification and matching as set in the
introduction. Let Ap be a Hilbert sub-group of A and assume that the action
is C?. Let L € C*(X x X,R) be non negative. The value of L(z,z') should be
interpreted as a distance between z and 2. Let (fi)1<i<, be a family of C? patterns
in P called the template patterns. Now, let fe P be the observed pattern. For all
i€ {l,---,p}, we define E; : Ap—R by and W; : Ap—R by

Ei(a) = /M L(f,af;)dp and Wi(a) = E;(a) + %dB(e,a)2.

Let S; = inf,ca, Wi(a) be called the score of the template f;. We will say that
fbelongs to the class of f; if S; < S; for all j # ¢. The problem of classification
and the problem of pattern matching is reduced to the computation of a minimum
a; € Ap such that W;(a;) = inf,c 4, W;i(a). The existence of ; under a weak set of
hypothesis on L, fand fi is a consequence of corollary 3.9 if we assume the Ap is an
Hilbert sub-group of 4g. This existence result is particularly welcome since the lack
of existence result is one of the main drawback of most of the variational approach
in pattern analysis. Now, on the computation side, we still need a numerical scheme

to get a;.

4.1. Optimal control approach. From now, we focus on the matching problem
for a given template f and a given observed pattern f so that we will forget the
under-script 4. A first approach is to reformulate the problem of the computation
of @ as a problem of optimal control. Indeed, let H([0,1], Ap) = A(L%). Now, let
J : H([0,1], Ag)—R be defined by

1 (' dA
A)=FE(A - —22
T = B + 5 [ G,

where for any A = A(Y), df; denotes A,Y, and |df; A, denotes |A;Ys|a, = |Ysle-

A minimum A of J is a solution of an optimal control problem. The existence of

such an A in H([0,1], Ap) is again a consequence of theorem 3.2 since we deduce
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easily from it as in corollary 3.9 that J o A is lower semi-continuous on L2, with
compact level sets. Obviously, A; is a minimum of W. Now, working formally, one
could write the solution of the associated Hamilton Jacobi equation as (see [5])

oV 18_V
Oa

(40) 5 t 3l |2 =0; V(1,a) = E(a),

where the Hamiltonian is given by H(t,a,y) = |y|2. Then, A is a solution of

dA, ov, .

(41) == —%(t, Ay).

Of course, the existence and the regularity of a solution of (40) in our infinite
dimensional group situation cannot be stated rigorously without more information
on the differential structure of Ag. From a geometrical point of view, assume that
for each a € Ap and each y € T, Ap we can define for all ¢ € R, the geodesic curve
t—Exp(ty) starting from a € Ap with initial velocity y € T, Agp. The existence of
the Riemannian exponential mapping is not established since we have only proved
the existence of a geodesic between points in Ag. However, still working formally,
let ¥ be the flow on Ap defined by

¥,(a) = Exp(tV, B),

(¥ is the geodesic flow on Ap with initial velocity field VE). According to the
usual theory of optimal control, if for any ¢ €]0,1], @ is a minimum of W; defined
by

Wi(a) = E(a) + %dB(e,a)z,

we have ¥;(G;) = e. Hence, one can try to solve the equation below with starting

point e:

d&t _ 6(111,5)—1

(42) - ot (e)-

Equation (42) is more tractable than equation (41) since, as far as ¥; is invertible,
amg—f(@ depends only on ¥y, % and the spatial derivative of ¥ at point aq.
However, the non inversibility of ¥; occurs on the caustics (see [3] p458) which
are unavoidable for a general function E if we do not restrict to small values of
t. Moreover, we are far from being able to compute ¥ even locally. Hence, even
formally, the resolution of the optimal control problem in our infinite dimensional
situation leads to huge geometrical difficulties out of the scope of the general setting

of this paper.
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4.2. Sub-optimal solutions. However, if we look in the family of sub-optimal
solutions, we can derive a useful algorithm which is tractable from the numerical
point of view (see [18]). Indeed, consider the function J : [0,1] x H([0,1], A)
defined by

~ 1 [t dAs ,
J(t,A)_E(At)+§/O |~ 4, ds.

For a fixed A, we have

aJ B dA;
E(ta A) = QAt(W

where @, : T, Ap—R is defined by

),

Quy) = (VaB, ), + 509, )

for all a € Ap. The minimum of @, is easily computed and we get

1
Qa(_vaE) = lllf Qa(y) = __lvﬂEﬁ S 0’
y€ET, AB 2

so that if we consider now the solution A € C([0,1], Ap) of the gradient equation

dA,
- Vvak

which exists thanks to theorem 2.19 and proposition 3.11. Obviously, J(t, A) is non

increasing as a function of ¢ since we have

aJ, ~
% d= inf Q;() <o,
ot yETa, AB A

dd, %, ds we get that J(t,4) <

ds

¢
a,ds)? < fo d;l;

Now, using the inequality ( fot
W (A) for all £ € [0,1].

From this discussion, we can now propose our sub-optimal algorithm simply
based on a gradient on the function E. More precisely, assume that Ap is an
Hilbert sub-group of 4y and let E : Ap—R be defined by

(43) E@=@uﬁmm

and satisfying the assumption of theorem 2.17 (ii). Then, we get from theorem
2.19 and 3.11 that there exists p € C([0,1],.Ap) which is the solution of the formal
gradient equation

dp
dt
ie. p= A(Y)withY; = —p(t)"'Vp4E. In fact, the gradient equation has a
solution in [0,+o0o[. We just have to define by induction on n € N: p(t +n) =

(44) ~V,E,
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p(n)sn(t) ;t € [0,1], where s, is solution of % = —V,.(E o Lyy)), and Ly,
denotes the left multiplication by s,. Now, let ¢ € C(Ry,R}) be defined by

1/ [ 2
(45) ®) = Bo0) + 5 ([ Vyco Bluds)
The function g is in fact in C([0, +oo[, R) as shown in the following proposition.

Theorem 4.1. Let E be defined by (43) and satisfying the assumption of theorem
2.17 (ii). Let p € C(Ry, Ap) be the gradient descent along E defined by (44) and
let ¢ € C([Ry,Ry) be defined by (45). Then,
(i) the function g € C*([0,+oc[,R) and
dq 9 t
at = _|VPE|p +( A |VpE|pds)|V,Elp.
(i) there exists t € [0, 400 so that q(t) = tir>1£q(t).

Proof. We start with the proof of (i). It is sufficient to prove that ¢(t) = E(p(t)) is
C*fort € [0,1] and that ¢ = —|V,;E|2. Let (Y™)nen a sequence in 7° such that
[[Y™ — Y| —0 where Y; = p(t) "'V, E. Let p" = A(Y™) and ¢, (t) = E(p"(t)).
Since Y™ € T, one easily gets that

t t
cn(t) —en(0) = —/ (Vpn B, p"Y™) ds = —/ (VpE, V,E) ,ds + €n,
0 0

where e, = [5 (V,E, V,E) ds — [ (Vpe B, p"Y™) . ds. However,
(VoE, VPE)p —(VpE, pnYn>p"|
<KVprE, p"Y™ — pnp_lva)p" — (p"pT'VuE ~ VB, pnp_lva)p"|
< |VprElpn Y _p_lva|e + |VpE|p|p_1va - (pn)_lvp"E|e-
Since VE is bounded and strongly Lipschitz, there exists K > 0 such that
len| < K|[Y™ = Y|ls + KD(p,p"),

where D is defined in definition 2.3 so that €,,—0 when n tends to infinity. Moreover,
cn(t) — cn(0)—c(t) — ¢(0) so that c(t) — c¢(0) = —fot |VpE|2, and the proof (i) is
complete.

Concerning now the proof of (ii), we will proceed by contradiction. Assume that
there exists an increasing sequence (t,)nen such that lim¢, = +oo and ¢(t,) >
q(tn+1). Then, for all n > 0, there exits t& €]tn,tn+1[ such that %(t;) <0
Le. |Vpus)E| > fg:‘ |VpE|ds. Assume that [;°|V,E|ds > 0. Then considering
eventually a subsequence of (t,)nen, We can assume that there exists a > 0 such
that 2 fot: |VpE|ds > a for all n > 0. Since VE is bounded, there exists K > 0 (cf
lemma 2.5) such that for all ¢,¢' <0, do(p(t),p(t')) < K|t—t'|exp(K (|t —1']). Now,
using the fact that VE is strongly Lipschitz, we get that there exists n > 0 such
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that for all ¢ € [t} — 0, + 7], [Vp@s)E| > az. Thus, [ |V,E|*ds = 400. Since
we have proved that %(E op) = —|V,E|? we deduce that E(p(t))— — oo which
is in contradiction with the fact that E is non negative. Hence [;° |V,E[?ds = 0.
However, we get in this case that p(t) = e for all £ > 0 so that ¢ is constant. This
is again in contradiction with ¢(t,) > q(t,+1). The proof is complete. O

From the last theorem, we can define our sub-optimal solution of the matching
problem for the observation f and the template f as a = p(f) Moreover, we will
call § = q(t) > W (@) the sub-optimal score of the template f. Now, if we have p
templates { f; | 1 < i < p }, we define similarly a; and S; so that i = argmingk
will be called the sub-optimal solution of the classification problem and 6;the sub-
optimal solution of the matching problem for the family { f; | 1 < ¢ < p }. The
essential fact here, is that the sub-optimal solution of the classification problem as
well as the sub-optimal solution of the matching problem are well defined and can

be numerically computed, so that this approach seems very attractive.

4.3. Examples. In this subsection, we will present some applications of the pre-

vious scheme to various tasks in images and signals processing.

4.3.1. Structural restoration of grey level images. In this framework, we say that a
grey level image is a measurable function from M = R?/Z? to X = R. One could
choose for M the unit square [0, 1]?> but we prefer the choice of the 2-dimensional
torus to have a compact manifold without boundary. This choice also allows to
define translated images f,(m) = f(m + u). We single out a C? template in P
denoted f and we consider an observed images f € P. The problem of structural
restoration of images as defined in [1] is described in the following way. We consider
a Hilbert space of vector fields on M and we define the solution of the structural
restoration problem by

(46) i = argmin /M(f(m) — F(m + u(m))2du + %(u, We.

Given 4, we have a complete matching between the points of f and those of fby
m—m + u(m) (note that m + u(m) should be interpreted as a sum mod 1). This
approach has been performed in the case of X-rays images of hands in [1]. However,
one of the main drawbacks of this approach is that the matching m—m + u(m)
is not onto nor injective on M. This problem is particularly visible when large
deformations are involved.

In our framework, the problem can be well-posed. It corresponds to the case
G reduced to {1¢}. Then the tangent space Ao, = ToAco is isomorphic to X(M).
Now, if we define the norm | |, on A by

(47) lyle = (¥, ¥)o) /2,
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and assuming that | | is admissible (which is the case for the scalar product con-
sidered in [1]), we can define the Hilbert sub-group Ap of Ap whose tangent space
T.Ap is isomorphic to ©. Then, it appears that

(48) ] (Flom) = om -+ )P+ 5, )

is an approximation near e = Idys (u(m) = ¢(m) — m) to

(49) | (Flom) = fo(m) P+ s (e, 07

Now, since (z,z')—(z — z')? is C? and since G is compact, we can define the
sub-optimal solution g$ of the recognition problem (in this case, we have only one
template). Since ¢ € Aut(M), the matching is invertible.

With our framework, we can also allows a simultaneous displacement of the
points of M and a variation of the grey levels. It is sufficient to consider G = R
with the action gx = g + z. In this case, we have & = R and T. Ao is isomorphic
to C°°(M,R? x R). The admissible norm can be given for y = (u,z) € To Ao by

(50) lyle = ((u, u)g + (2, 2)g)'/?,

where (, )g/ is a scalar product on C*°(M,R) such that
(51) |2loe + |V2]oo < K (2, 2)e, ">

4.3.2. Structural restoration of displacement fields. We consider here that X = R?,
that is the patterns are vectors fields in M. Then one can choose for G either
G = {1g} or R? according to the fact that we want or not to deform the values of
f(m) for m € M. A more unusual case is X = S!, that is f(m) is an unit vector,
and G = S' with the action given by the complex product (here we consider S*
as the set of the complex numbers with norm 1). Again in this case, fero is
isomorphic to C*°(M,R x R) and we can define the norm n by (50). For the

function L, we can choose
(52) L(Z,.’L’I) = |£E - xl|27

where z and z' are again considered as elements of C and |z| denotes the usual
norm on C. One verifies easily that L is C*°. Since G is compact, the condition
for the differentiability of E(a) = [,, L(f,af)dp is fulfilled and we can define the

sub-optimal solution p of the matching problem.
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4.3.3. Active contours. We consider here closed curves living in RP, so that M =
R/Z and X = RP. For G, a natural choice is R? with the action gz = g+ z. Given
an admissible norm on T, A and a penalty function L € C%(X, R, ), the solution

p of the formal gradient equation

dp
— =-V,E
(53) 7 Vo
can be interpreted as a method of deformable contours as introduced in [13]. How-

ever, in our framework, the solution of (53) is well defined for all ¢ > 0.

4.4. Choices of | .. We will not go further in our examples, since the framework
is sufficiently general to be applied in many situations. We want here to show that
the condition of admissibility on | |, is weak. We will consider the case when M =
RP /Z? and the Lie algebra of G is isomorphic to R?. Then, T. Ao is isomorphic to
C®(M,RP x R?). Let y = (u,2) € TeAoo where u is the component on R? and z
on RY. Since M is the p-dimensional torus, one can define for all p-uplet 1 € NP
the Fourier coefficient u¥ (resp. 2%¥) of the k-th component of u (resp. z). Then let
(an)nene be a sequence of non negative numbers and define

1/2
(54) lyle = (Z an (|ua)? + |Zﬁ|2)> :

AENP
We get from the Sobolev imbeddings that | |, is an admissible norm if there exist
B>a>p+3,K>0and K' > 0 such that for all n € N

(55) K'(|a| +1)° > an > K (|| +1)*

where || = sup |n|. For example, in the case of curves in R?, i.e. M = R/Z and

X = R?, we can choose the norm

(56) bl = [(au? +wtduct [ A +|2Pdu

where A is the Laplacian. The case of norm | |, defined with the Fourier coeffi-
cients is particularly appealing for numerical reasons since one can use Fast Fourier
Transform on computer in the implementation. However, the norm should be cho-

sen according to the regularity expected on the elements of Ap.
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