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Abstract

This paper studies mathematical methods in the emerging new discipline of Computational Anatomy. Herein we

formalize the Brown/Washington University model of anatomy following the global pattern theory introduced in [1, 2],

in which anatomies are represented as deformable templates, collections of 0; 1; 2; 3�dimensional manifolds. Typical

structure is carried by the template with the variabilities accommodated via the application of random transformations

to the background manifolds. The anatomical model is a quadruple (
;H; I;P), the background space 

:

= [�M� of

0; 1; 2; 3�dimensional manifolds, the set of di�eomorphic transformations on the background space H : 
 $ 
, the

space of idealized medical imagery I, and P the family of probability measures on H. The group of di�eomorphic

transformations H is chosen to be rich enough so that a large family of shapes may be generated with the topologies

of the template maintained. For normal anatomy one deformable template is studied, with (
;H; I) corresponding

to a homogeneous space [3], in that it can be completely generated from one of its elements, I = HItemp; Itemp 2 I.

For disease, a family of templates [�I
�

temp are introduced of perhaps varying dimensional transformation classes. The

complete anatomy is is a collection of homogeneous spaces Itotal = [�(I
�
;H

�).

There are three principal components to computational anatomy studied herein.

1. Computation of large deformation maps: Given any two elements I; I 0 2 I in the same homogeneous anatomy

(
;H; I), compute di�eomorphisms h from one anatomy to the other I
h
�!
 �

h�1
I

0. This is the principal method by

which anatomical structures are understood, transferring the emphasis from the images I 2 I to the structural

transformations h 2 H which generate them.

2. Computation of empirical probability laws: Given populations of anatomical imagery and di�eomorphisms be-

tween them I

hn
�!
 �

h
�1
n

In; n = 1; : : : ; N , generate probability laws P 2 P on H which represent the anatomical

variation re
ected by the observed popuation of di�eomorphisms hn; n = 1; : : : ; N .

3. Inference and disease testing: Within the anatomy (
;H; I;P), perform Bayesian classi�cation and testing for

disease and anamoly.
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1 Computational Anatomy: An Emerging Discipline

1.1 Introduction

When the Graduate Division of Applied Mathematics was founded 50 years ago at Brown University, its original

research pro�le was dominated by mechanics: elasticity, plasticity and 
uids. Indeed, the founder, Dr. William Prager,

was famous as the creator of plasticity theory and the faculty assembled by him had several members highly prominent

in the various specialties of mechanics. He later decided that it was necessary for the Division to branch our into other

areas of applied mathematics, but mechanics remained its center for a long time.

Therefore it is appropriate for a paper appearing in this Jubilee volume to be related to mechanics. This paper deals

with Computational Anatomy, which we view as belonging to the discipline of geometry, governed by pattern theoretic

principles, and whose kinematics is described in terms of concepts borrowed from continuum mechanics. In particular

we shall show how ideas from elasticity and visco-elasticity can help to represent the biological variability that is the

main object of study in Computational Anatomy.

For the past half decade our group has been involved in the development of mathematical and software tools spe-

cialized to the representation and inference of gross anatomical structures in the brain [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,

15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]. As the ambition is to create algorithmic tools which help neuroscientists and

diagnosticians in the analysis of the substructures of the human brain, the main di�culty we face is that the anatomical

substructures form highly complex systems, with variation being the rule! Devising representations and algorithms for

inference of brain anatomy in which the subject matter knowledge is precisely and completely speci�ed leads to the

development of anatomically complex knowledge representations [7].

This area of the mathematical codi�cation of biological and anatomical structure has been exploding over the

past several decades. Digital electronic data bases are currently available [26], especially for colocalization of volume

datasets such as those encountered with PET/SPECT, CT and MRI [27, 28, 29, 30, 31]. Suitable atlases supporting

neuromorphometric analyses [32] are now becoming available with the advent of large volumetric image data sets

with large numbers of voxel samples such as CT, MRI and CRYOSECTION [33, 34, 35, 36, 37, 38]. Complementary

to the atlas development work there has been great progress on anatomical mapping. Beginning with Bookstein's

pioneering work [39], investigators have succeeded in anatomical mapping based on geometric features such as landmarks

(points) [39, 40, 41] and contours(lines) [42, 43]. For such approaches prede�ned subsets of the anatomy provide

registration information and become the principal features about which variational studies between the various coordinate

systems proceed. The complementary activities on active geometry has presented signi�cant advances in the studies of

submanifolds of shape, including the active contour and surface deformation work in the non-statistical setting by the

Terzoupoulis school [44, 45, 46, 47, 48], Pentland and Sclaro� [49], and Staib and Duncan [50], as well in the statistical

setting the work of Cootes and Taylor [51] and Grenander and Miller [7, 52].

In the whole volume arena, a complementary activity has arisen out of the earliest elegant volume mapping work

of Bajcsy and collaborators [28, 29] begun in the early 80's and continuing today [53, 4, 5, 6, 8, 54, 12, 55, 56, 14].

The transformations are applied throughout the continuum of the coordinate system of the template and target, with

the voxel image data providing the matching forces throughout the continuum. These approaches have tended to study

higher dimensional transformations. Concurrently, the beautiful work by the Evan's group has proceeded along the lines

of establishing the power of these approaches in lower and moderate dimensional settings in which the image structures

being matched are more globally de�ned with the variability of global structures being the primary goal of successful

registration [36, 37, 57, 58, 59]. Structured approaches studying the variations of substructures via boundaries and

surfaces via vector �eld transformations are now emerging in several groups [9, 60, 61, 62]. As well, detailed gross

macroscopic study of cortical folding and localization of functional and anatomical boundaries are emerging in both

macaque and human for the Dale and Sereno and Van Essen groups [63, 64, 65, 66, 38, 23]. Via the earliest work of

Thirion and Gourdon [67, 68], and more recently Kent and Mardia [69] and Khaneja and Bikircioglu et al. [70, 24],

automated methods for generating the curves on brain surfaces are emerging as well.

Because of the shear complexity of human anatomy, in particular the human brain, we have emphasized the study of

shape as a collection of submanifolds all taken together forming the complete volume. Therefore, the methodology must

combine approaches associated with the active geometry of points, curves, and surfaces, as well as volume mapping.

We de�ne our mappings to be groups of di�eomorphisms acting on the background spaces collections of manifolds.

Di�eomorphisms on the entire background space when restricted to the submanifolds carry the topologies smoothly as

well. Through the recent work of Dupuis et al.[22], a complete understanding has emerged of the general smoothness

conditions required for the generation of di�eomorphisms via the transport equation introduced in [13]. This is most

akin to the beautiful work emerging from the Azencott school, in particular that of Trouve and Younes. Younes studies

di�eomorphic curve matching [71] where a Riemannian metric is de�ned on a group involving di�eomorphisms which

acts transitively on plane curves. Geodesics on the acting group are explicitly computed, and a distance, yielding a

variational mathing paradigm, is de�ned between plane curves by projection (or least action principle). Trouve examines
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more general manifolds [72, 73, 74, 75, 76] providing a geometrical framework in terms of in�nite dimensional groups.

Starting from a metric on the set of smooth vector �elds on a compact Riemannian manifold without boundary, Trouve

establishes similar conditions as in Dupuis et al. [22] for the existence of the minimizer to the matching problem

in the space of di�eomorphisms. It is our belief that this overall approach of studying transformations as groups of

di�eomorphisms is the most tenable approach to describing biological shape as complex as human anatomy.

This greater area in which we �nd ourselves and others working is what we are coming to call the emerging discipline

of computational anatomy. It is progress in this area which we describe today, emphasizing the work in our own groups

at Brown and Washington Universities.

1.2 The Brown/Washington Model of Anatomy

We use the global shape models introduced in [1, 2] to represent anatomies as deformable templates. The typical structure

is carried by the template; the variabilities are accommodated via the introduction of probabilities on the random

transformations. The anatomical model is a quadruple (
;H; I;P), the background space 

:

= [�M� a collection of

0; 1; 2; 3�dimensional manifolds, the set of di�eomorphic transformations on the background space H : 
$ 
, the space

of ideal imagery I, and P the family of probability measures on H.
The group of di�eomorphic transformations H are constructed to be rich enough so that a large family of shapes may

be generated with the global topologies of the template maintained. We begin with the basic assumption that there is

essentially only one deformable template, i.e. one anatomical ensemble (
;H; I;P) which forms a a homogeneous space

[3], or what we shall term a homogeneous anatomy. The basic property is that it can be completely generated from one

of its elements, I = HItemp; Itemp 2 I. In the homogeneous anatomy setting, all elements I 2 I are essentially the same
modulo a di�eomorphism in H. More generally, as for the disease state, an area that has received less attention [77]

then the study of normal anatomy,, we shall require a family of templates [�I�temp with perhaps varying dimensional

transformation classes. The complete anatomy is built from collections of homogeneous spaces Itotal = [�(I�;H�). We

return to this below.

Within this framework, we see that there are three principal components to computational anatomy:

1. Computation of large deformation maps: Given any two elements In; Im 2 I in the same homogeneous

anatomy (
;H; I;P), compute di�eomorphisms h with inverses h�1 :

= � from one anatomy to the other In

hnm
�!
 �

�nm
:
=h
�1
nm

Im.

This is the principal method by which anatomical structures are understood, transferring the emphasis from the

images I 2 I to the structural transformations which generate them.

2. Computation of empirical probability laws: Assume we are given populations of anatomical imagery and

di�eomorphisms between them In

hnm
�!
 �

�nm
:
=h
�1
nm

Im; n;m = 1; : : : ; N � H. The second component of computational

anatomy calculates probability laws P 2 P on H which represent anatomical variation re
ected by the observed

popuation.

3. Computational inference on population and disease testing and classi�cation: Given a anatomical

representation in the form of prior probability measures on the deformable template representing the anatomy,

perform Bayesian classi�cation and testing for disease and anamoly.

1.3 Generating Large Deformation Maps

The large deformation maps generated in our group are constructed using methods which have been under development

over the past 6 years [4, 5, 6, 9, 11, 13, 5, 16, 17, 20, 18, 22]. These approaches generate vector �elds which are

bijective maps between families of templates and targets, and are based on large deformation kinematic models. The

maps are of high dimension, allowing for the local dilation and contraction of the coordinates of the template into

the coordinates of the individual anatomy accommodating the very �nest details in variation. The large deformation

di�eomorphisms are constructed as the solution of ordinary di�erential equation corresponding to the transport equation

in mechanics. The deformations thus correspond to 
ows; the fact that they are integrated in time guarantee their large

deformation di�eomorphic character. Our purpose in constructing such invertible maps is that they can be used to study

geometric features of the target anatomies. The transformation are constrained to be 1-1 and onto, and di�erentiable

with di�erentiable inverse, so that connected sets remain connected in the target, surfaces are mapped as surfaces,

and the global relationships between structures are maintained. For example, connected such as ventricles, thalami,

deep nuclei in brain anatomy all remain connected under the mapping. As well, the large deformation maps carry the

coordinates of disparate families onto each other while maintaining the geometric features. Thus they do not bias the

empirical statistic building towards one brain or the other. This would be in sharp contrast to, for example, large
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deformation elasticity as used in [54], in which the fundamental assumption associates energy to physical distance and

size of deformation between objects. For mapping a single brain to itself during growth, development and aging, this

would be more appropriate; mapping across brains seems to require a deformation setting in which one is not penalized

in the same manner.

In our work, not only are the global structures of deep nuclei important but as well we study the di�erential geometric

features associated with the �nest geometric structures including sulcal trajectories and cortical folds. Over the past

several years we have been involved in a collaboration with David Van Essen as he studies the cortex of the macaque

and the Visible Human in cryosection [78, 10, 65, 23]. The awesome precision revealed by such data sets supports

natural biological questions concerning geometric features. Notions such as Riemannian length, Gaussian curvature,

and surface area measures of highly complex folded structures are at the heart of our investigative work and others

[79]. Methods which allow for the study of shape in a quantitatively meaningful manner are becoming essential. It is

therefore natural to organize the transformations around the continuum, emphasizing the properties of di�eomorphisms

as they map the various tangent spaces and curvature features of the embedded submanifolds. Instead of pixel based

approaches we prefer to base the analysis on the Euclidean space in which the brain structures actually reside. In this

approach, the maps are used to analytically compute classical formulas from di�erential geometry on transformation

of the tangent spaces and curvature tensor under the Jacobian and Hessian. For this the transformations must be

established on the continuum. We deal with the awesome dimension of the transformation by organizing them into

a hierarchy of subgroups, with dimension which increases with successive subgroups [17]. At the highest dimension

(>> 107�108), the transformations are rich enough to map the �nest anatomical details. If �ducial markers, landmarks
and surface information are known then they can be consistently combined with the partial di�erential equation (PDE)

representations of the variational solutions representing the optimal transformations (see [9], for example). Ultimately,

the maps are based on the full continuum of coordinates with embedded points, lines, surfaces, and subvolumes carried

into the target by the high dimensional smooth volume transformations.

1.4 Empirical probability construction and complex priors for image reconstruction

The Bayesian approach to understanding complex brain variability is to construct one or several templates containing

the topological structures of complex anatomy. Upon this a probability measure is constructed on the space of IR3 valued

vector �eld transformations H. This is the knowledge representation of biological variability. The prior measure encodes
probabilistic properties of the maps which are required for understanding the various di�erential geometric invariants

and physical features such as distances, surfaces, and volumes in the in�nite family of possible anatomies. The template

and the prior measure precisely specify the global anatomical relationships between structures as well as how they can

vary from one brain to another.

For constructing such knowledge representations empirically, the template and the parameters of the prior measure

are directly estimated from subpopulations of brain anatomies. This is similar to the approach taken in [7] for the

representation of mitochondria/membrane organelle shape. Organelle templates and prior measures were constructed

by mapping 100's of biological shapes to topologically equivalent structures. Such an empirically based procedure is

proposed herein, requiring the careful de�nition of the template via the family of maps to the population of anatomical

shapes which the template represents. The empirical average of the family of maps provides the minimum mean-squared

error (M.M.S.E.) template. It is important to realize that the average should be taken in transformation space, not in

image space. The empirical variation of the family of transformation �elds provides the information for the probabilistic

properties of the prior measure de�ning the space of vector �eld transformations. Prior estimation corresponds to

generalized spectrum estimation.

One of the principal motivations of our work is associated with several longstanding involvements in medical imaging

on the development of anatomically complex prior distributions for probabilistic image reconstruction. For imaging

modalities arising in positron emission and single photon emission tomography (PET/SPECT), in contrast to computed

tomography (CT) and magnetic resonance imaging (MRI), probabilistic image reconstruction algorithms are required due

to the inherently low signal-to-noise ratios (�nite photon counts). Since the earliest introduction of the EM algorithm by

Shepp and Vardi in 1982, the 80's and 90's have seen the development of an extensive literature in maximum likelihood

(ML) reconstruction [80, 81, 82, 83, 84, 85, 86, 87, 88, 89] incorporating the fundamentally statistical nature of the

measurement process. In the early 80's, introduction into the ML formulation of prior distributions on the image

class was resisted. With the identi�cation of the PET/SPECT reconstruction problem as a density estimation problem

in function space, and the subsequent connection to Grenander's demonstration on the inconsistency of maximum-

likelihood from �nite data sets [90], there has been a rapid in
ux of prior based regularized MAP reconstruction methods

[91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101], including the method of sieves, Good's roughness, Gaussian and Gibb's

random �elds, as well as prior distributions controlled by edge and boundary processes. In all of these approaches

the prior is anatomically simple and relatively uninformative. It re
ects little if any a-priori information about the

individual anatomy itself.
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Modern neuroimaging methods have now reached the point where exquisitely detailed in vivo information regarding

the anatomical structure of each individual brain is routinely collected. Commonly individuals receive multiple modal-

ity scans including CT and MRI providing relatively precise < (1mm)3 anatomical resolution. Such anatomical `side

information' provides signi�cant constraints and enhancement for functional imaging studies. Studies of cerebral hemo-

dynamic 
uctuation, derived during various mental task activation studies [102, 103, 104, 105], for example, generally

provide substantlly lower anatomical resolution. There has as well been a growing body of work on the introduction of

more structured models for incorporation of side information [106, 107, 58]. To date the incorporation of anatomical

information has been hindered by the inability to expeditiously relate such information between morphologically varying

brains. The di�culty lies in two areas. First images between di�ering anatomies must be registered. Second, even

when registered, normal variation across disparate anatomies makes pooling of inter anatomical data di�cult, if not

impossible. Providing mathematical tools which allow for structural decompositions of individualized brain tissue would

substantially increase the e�ectiveness of reconstructions which are constrained via the individual's own anatomy (see

Figure 7 of [4] and [108], for example).

1.5 Normal versus disease state.

Our goal is to achieve understanding of anatomical variability in the sense that we can make precise probabilistic

statements about the variability: this is what we mean by image understanding. This plunges us deeply into the study

of normal versus disease as indicated via anatomical variation. Almost all of our discussion has focussed on normal

anatomical structure. Concurrently, we and co-workers are developing anatomical atlases with the intention of providing

a systematic approach for the study of the neuropsychiatric disease [109] and associated shape change [55, 56] as well as

for use in plastic surgery [110, 111]. To date in the study of morphometric change and its link to neuropsychiatric disease,

manual and semi-automated methods for volumetric assessment of small substructures within the brain are relatively

error prone with the reliability of these methods only barely adequate to make quantitative statements about disease

(see for example applications in schizophrenia [112, 113, 114]). More importantly, most current segmentation based

methods for morphometry do not capture information about the shape of structures well. While the volumes of brain

structures and substructures may be related to aspects of the pathogenesis of disease, critical aspects of disease may not

be re
ected in simple volume measures alone. There is already evidence that the qualitative feature of morphometric

shape, such as the patterning of sulci and gyri on the cortical surface [115], are indicators of disease. The precise and

quantitative assessment of shape characteristics of volumes and surfaces could conceivably o�er insights into a multitude

of critical questions.

A serious discussion of variation away from normal plunges us immediately into the very heart of Bayesian hypothesis

testing. For years people such as Marcus Raichle in cognitive science and neurology have argued for the necessity of

a more complete understanding of the normal thinking brain as tantamount to the understanding of disease state.

This is fundamental to the Bayesian paradigm. The base measure representing normal anatomical variation (the null

hypothesis) is the basic reference measure. Populations of patients with neuropsychiatric diseases, characterized by

subtle and distributed abnormalities of brain structure and shape can only be compared to normal controls through

the prior measure re
ecting the statistical summary of normal and abnormal variation of the component structures of

the brain. Towards this end, we introduce the space of normal anatomies (I;H; P ), I the image algebra of all possible

anatomical images associated with transformations on the coordinate system H : 
 $ 
. The image algebra will be

a union Itotal = [�(I�;H) where all images in I� are topologically equivalent. Characterizing normals becomes an

empirical procedure of constructing probability laws P from the family of transformationH observed in actual anatomies.

Thus far in our work, disease or abnormality refers to either of two kinds of anatomical variation: (i) local and regional

alterations in the size and shape of brain structures relative to the normal base measure, i.e. a large deviation from

normal, or (ii) the abnormal presence (e.g., neoplasm) or absence (e.g., congenital) of substructures corresponding to a

fundamental change in topology of the underlying graph structure of the brain.

In the �rst case (i), the disease state corresponds to a transformation h 2 H of one anatomy to another. The

signalling of disease, therefore, corresponds to a transformation which is a large deviation from the identity in the

group of transformations as re
ected by the normal and disease measures (P0; P1), with the disease measure absolutely

continuous with respect to the normal P1 >> P0. For example, for characterizing disease the image template representing

normal Itemp 2 I can have a hippocampus that is classi�ed as normal, while there could exist a transformation h 2 H
at considerable distance from the unit element of the transformation group. The subcomponents of the image could be

so small that it may indicate disease such as ventricular enlargement, hippocampul and or cortical shrinkage such as

might be associated with various neuropsychiatric diseases, alzheimer's, alcoholism, or schizophrenia. To quantify such

statements we use the prior P on H .

This brings us to the second aspect of disease, (ii) in which the topology is fundamentally di�erent. This requires the

extension to transformations that destroy topologies, di�eomorphisms with tears to use David Mumford's terminology.

This is an ambitious area of current research. The relation between homogeneous and normal anatomies is not completely
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straightforward. On the one hand, all the images in a homogeneous anatomy generated by a normal template I�temp
need not be normal. In contrast, the set of normal anatomies need not constitute a homogeneous anatomy, since

one can well imagine two images classi�ed as normal although they are not topologically equivalent. This leads to

the dichotomy of transformations as well, (Ha;Hh) corresponding to automorphic or topology preserving deformations

versus heteromorphic, topology destroying deformations. Most of the e�ort within this paper is focussed on topology

preserving transformations. In the �nal sections topology destroying transformations are presented that annihilate or

create certain anatomical substructures.

1.6 Paper layout.

In section 2 the anatomical model is presented as an orbit under the group action of di�eomorphisms with a distance

metric placed on the orbit. With this distance metric, the large deformation landmark and image matching problems are

presented. Section 3 examines examples of large deformation brain mapping, studying the neocortex and hippocampul

subvolumes. In section 4 small deformations are examined, with small deformation templates for entire brains in the

macaque, and hippocampus surfaces in the human. Sections 5 and 6 examine small and large deformation probability

measures for anatomical representation as generalized autoregressive modelling on Gaussian �elds. Sections 7 and 8

examine large deformation surface and curve matching. The distances between surfaces is associated with the Hilbert

Schmidt distance between the shape operator curvature representation of the surface; for curves the Hilbert Schmidt

distance between the orthogonal Frenet curvature and torsion representation of curves is used. Bipartite graph matching

is presented for the curve matching problem, with prior distributions induced via the Frenet representation of curves

examined as well. Section 9 examines the study of symmetry through the orthogonal group, and section 10 examines

disease introducing two models of disease, automorphic and heteromorphic patholigies, the former topology preserving

and the latter topology changing.

2 The Anatomic Model

Restrict attention to brain anatomy. The template brain coordinate system 

:

= [�M� = [0; 1]3 is a collection of

heteregeneous submanifolds all of which have been selected as biologically meaningful since they are biologically stable.

Figure 1 shows various examples depicted via volume tissue sections corresponding to the whole brains from the macaque

monkey from David Van Essen's laboratory. Top left panel shows the surface rendering of 640�480�200 voxel volume,
with the superimposed sulcal lines (contours). The top right panel shows a section through the entire volume. Notice

the beautiful cortical folds, the deep nuclei, as well as the hippocampus. The bottom left panel shows a rendering of

the C2 manifold representing the cortical surface consisting of locally quadratic charts of the full triangulated graph of

the surface (see Joshi et al. [10]). The bottom right panel shows a section through a brain cryosection with the cortical

surface embedded in the volume delineating the interface between the gray and the white matter.

2.1 The Anatomical Orbit

Variability is studied through the transformations h 2 H : 
 � IR3 $ 
 the space of homeomorphisms constructed from

vector �elds

h : x
:

= (x1; x2; x3) 2 
 7! h(x)
:

= (h1(x); h2(x); h3(x))| {z }
:
=x�u(x)

2 
 ; (1)

where it is sometimes convenient to study the transformations modulo the identity map in terms of the u(�) �eld. The
negative sign gives the interpretation as the Eulerian displacement of the particulate description of 
ow; a particle at

position x originated at point x � u(x) in the original coordinates. Anatomic variation is studied through the inverse

maps as well, �
:

= h
�1 2 H. As we choose to calculate arc length, surface areas, and volume measures we require the

transformations to be di�eomorphic. The transformations are assumed rich enough to carry a single element through the

space of anatomies. Now consider the ensemble of anatomical imagery I the image algebra of functions I 2 I : 
! RM
de�ned on 
 the background space on which the coordinate systems are de�ned:

I

:

= fI(x); x 2 
g ; 
 :

= [0; 1]3
:

= [�M� � IR3
:

The range or contrast spaceR in which the measured imagery takes its I-values are in generalM -vectors with components

corresponding to intensities from various sensor modalities, cell types, names of brain nuclei, etc. Throughout they shall

correspond to the idealized way in which imagery of MRI and the gray level luminance of gross cryo-sections (CRYO)

as measured via CCD detection would appear without noise. Thus, the imagery corresponds to the scalar mean �elds
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Figure 1: Top left panel shows a macaque brain hemisphere with some of the sulcus fundus curve paths depicted. The top

right panels shows a whole brain section. The bottom left panel shows the C2 manifold representing the cortical surface

at the interface of gray and white matter. The bottom right panel shows a section through a whole brain MRI with

the hippocampul surface embedded. Data were taken from a whole brain volume reconstructions from the laboratory

of David Van Essen of the Department of Anatomy and Neurobiology and John Csernansky of the Department of

Psychiatry both of Washington University.

which parameterize the measurements in the idealized case, with no noise or blur in the optical transfer. The group of

di�eomorphisms divides the anatomical ensemble into discjoint orbits.

Theorem 1 Given the group of transformations (H; �) with law of composition � and identity element e, then H acting

on I de�nes a group action G : H� I ! I according to

G(h; I)
:

= hI

:

= fI(h(x)); x 2 
g ; where G(h2; G(h1; I)) = G(h2 � h1; I) := h2 � h1I : (2)

Then I is composed of a set of disjoint orbits which are each homogeneous spaces under the group action of di�eo-

morphisms:

I = [�H�I�temp (3)

Proof: G as de�ned is a group action, and therefore de�nes an equivalence relation I1 � I2 if 9h 2 H such that

I1 = hI2 (see [3]). Since it is an equivalence relation, it divides the space of anatomies into disjoint orbits. �

It is assumed throughout most of the paper that the anatomical ensemble I is a homogeneous space, so that there is

only one template Itemp, and the set of di�eomorphic transformations H : 
 $ 
 associated with the image algebra I
act transitively on I. That is, any two images I1; I2 2 I are topologically equivalent in the sense that

9h 2 H 3 I1 = hI2 where hI
:

= fI(h(x)); x 2 
g : (4)

This makes precise the notion of a deformable template, one selected and �xed anatomy Itemp 2 I such that I =

HItemp = fhItemp : h 2 Hg, and (I;H) is the orbit under H of the template Itemp. The template Itemp
:

= fItemp(x); x 2

g and the associated imagery fI(1); I(2); : : : I(M)g represent the mean �elds associated with each of the M -imaging

modalities.
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For purposes of understanding the populations of anatomy, modulo the special Euclidean group E(3) = IR
3
SO(3)

(semi-direct product of the translation and generalized linear group), the template itself carries the a�ne motions with

it. The template is then a pattern or orbit of Itemp under the rigid motion. Throughout this distinction is assumed

understood, with all of the di�eomorphic maps H generated modulo this rigid motion. In our setup a pattern is an

equivalence class of images from I with respect to a similarity group S, for example S = E(3) (see [1, 2]).

2.2 Distances between Images in the Orbit

The brain data shown in Figure 1 provides speci�c motivation for the fact that the complexity of the patterns which

must be represented|ventricles, cortical folds, etc.|requires transformations which are of high dimension. However,

all quadratically based penalties such as used in [116, 29, 117, 4] have restoring forces to the template proportional

to the distance displaced. Large magnitude displacements are severely penalized. To accommodate large magnitude

deformations, small deformation assumptions upon which linear models and quadratic penalties are based (see [118, 119])

are relaxed, motivating the formulation of transformations in an Eulerian setting incorporating the large deformation

kinematics of Christensen et al. [13, 120, 6, 5]. In this setting the restoring force which normally grows with deformation

length is allowed to relax with time, originally Rabbitt's formulation [5], while still maintaining smoothness of the

deformation �eld. This physical principal becomes the basis for our proposed metric distance between shapes.

To map one anatomy to another we need to de�ne a distance, or a metric �(I; I 0); I; I 0 2 I between elements

assumed from the same orbit. We do this assuming that the di�eomorphisms between the image pair I
h(T )
�!
 �

�(T )
:
=h�1(T )

I
0,

evolve in time as a 
ow given by the solution to the transport ordinary di�erential equation (ODE). De�ning the operator

rtx :

= [ @

@x1
;
@

@x2

@

@x3
], then the di�eomorphisms are identi�ed with the end point condition of t 2 [0; T ] given by

d�(x; t)

dt

= v(�(x; t); t) ; �(x; 0) = x ; (5)

@h(x; t)

@t

= �rtxh(x; t)v(x; t) ; h(x; 0) = x :

We identify the di�emorphisms with the space time velocity �eld v(�; �) : 
 � [0; T ] ! IR
3 corresponding to the

tangent �eld of the 
ow. The distance beween two images is determined by the distance from the origin (identity map)

of the associated velocity �eld which generates it. Following Dupuis et al. [18, 22] the space of velocity �elds is assumed

to be in a Hilbert space V with norm k � kV and inner product < �; � >V . To ensure that the ODE Eqn. 5 has a well

de�ned solution it is constrained to be an element v 2 V corresponding to a Sobelev space whose inner product and

norm corresponds to a �xed number of derivatives. The order of di�erentiation ensures su�cient smoothness so that

the solution of the ODE is unique and de�nes a di�eomorphism.

In all of the matching work [5, 6, 11, 13], we have chosen the order of di�erentiablity to correspond to di�erential

operators from continuum and 
uid mechanics, so that a positive de�nite linear di�erential operator of the form L =

�ar2 + brr �+c is chosen, which induces the norm in V according to kvk2
V
=
R
[0;T ]

R


kLv(x; t)k2dxdt <1. We have

used operators which di�erentiate only in space. The form of the operator is made explicit as we go.

De�nition 1 De�ne the distance �(�; �) : I � I ! IR
+ between elements I; I 0 2 I to be

�(I; I 0)
:

= min
v2V

Z
T

0

Z



kLv(x; t)k2dxdt subject to h(0)I = I; h(T )I = I
0 (6)

where h(x; T ) =

Z
T

0

�rt
x
h(x; t)v(x; t)dt + x ; x 2 
 ;

:

= 1 if @v 2 V : I 0 = h(T )I : (7)

It is sometimes convenient to denote the �nal time di�eomorphism as simply h(�) :

= h(�; T ). That this properly

de�nes a distance follows from the facts that (1) it is symmetric, and (2) satis�es the triangle inequality. The symmetric

property follows since v 2 V being su�ciently smooth implies the ODE has a unique solution, with � = h
�1 given by

the solution driven by the negative of the velocity �eld, 
owing opposite in time. Thus �(I; I 0) = �(I 0; I). The triangle

property follows from the Hilbert space distance being determined by the norm-squared kLvk2.
It would be nice to know that all distances between images are not in�nity, i.e. take elements I; I 0 which are

di�eomorphic, then there exists velocity �elds of �nite energy which when integrated through the ODE generate the

di�eomorphism. At least for the �nite dimensional landmark matching problem, this is the case. As proven in Joshi

via the homogeneity lemma [16], given anatomies I; I 0 contained in a compact subset of (IR3)L, then there exists �nite

energy velocity �elds which generate di�eomorphisms from one to another.
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2.3 Landmark and Image Matching

Brain geometry is studied through the di�eomorphic maps from one anatomy to another. For generating large defor-

mation di�eomorphisms we rely on the basic protocol described in [5, 6, 9, 11, 13, 16, 17, 18, 19, 22] in which maps

of increasingly higher dimensions are generated one after another through composition [17]. This combines informa-

tion at �ner scale by composing the large deformation di�eomorphic transformations h = hn � � � �h2 � h1. Successive

combinations of transformations are chosen including the a�ne motions, rigid motions generated from subgroups of the

generalized linear group, large deformation landmark transformations and the high dimensional large deformation image

matching transformations. The dimension of the vector �eld transformations are successively being increased. Given

the distance between imagery in the orbit I the matching problem between elements I; I 0 is straightforwardly de�ned.

Since all of the imagery being matched are observed with noise, model them as conditional Gaussian random �elds.

Take I as the provisory template; then the measured imagery I 0 is a conditionally Gaussian random �eld with mean

�eld the provisory template composed with the unknown di�eomorphism hI , and �xed variances. The di�eomorphism

h; �

:

= h
�1 are identi�ed with a velocity �eld v 2 V in the Hilbert space of space-time �elds. The problem is to estimate

the velocity �eld which matches I to the observable image I 0 with �nite penalty.

Assume each target is characterized via a set of landmarked imagery I
:

= fxl 2 
; l = 1; 2; � � � ; Lg and I 0 := fyl 2

; l = 1; 2; � � � ; Lg or digitized cryosection imagery (CRYO) or magnetic resonance imagery (MRI) I

:

= fI(x); x 2 
g,
I
0
:

= fI 0(x); x 2 
g. Throughout a quadratic distance function khI � I 0k2 is used de�ning the matching problem which

attains its minima when the landmarks and or imagery are mapped from the targets back to the template. As well we

assume that the anatomical imagery is smooth so that variation such as gradients can be computed and are smooth

themselves.

Problem Statement 1 (Large Deformation Matching) The optimal match of I to observation I 0 is given by

ĥ(x; T ) =

Z T

0

�rtxĥ(x; t)v̂(�; t)dt+ x where v̂(�) = argmin
v2V

kvk2
V
+ kh(T )I � I 0k2 : (8)

The costs for landmark and image matching become

landmark matching khI � I 0k2 :

=

LX
l=1

[yl � h(xl; T )]t��1l [yl � h(xl; T )]| {z }
D1(h)

; (9)

image matching khI � I 0k2 :

=
1

�
2

Z



jI(h(x; T ))� I 0(x)j2dx| {z }
D2(h)

: (10)

The �l; l = 1; : : : ; L are positive de�nite 3� 3 covariance matrices expressing uncertainty in landmark location; �2

expresses the noise properties for the image matching problem. The limiting case for equality matching results from

sending covariance to zero as demonstrated by Joshi [16]. This is included below.

3 Algorithms for Large Deformation Di�eomorphisms

3.1 Gradient Algorithm for Image Matching

The energetics
R T
0

R


jjLv(x; t)jj2dxdt on the space of di�eomorphisms are induced with L = (�a4� brr � +cI) and

powers Lm, m � 1. Christensen [120] has examined various boundary conditions, zero, mixed and periodic. Since we

identify the anatomy with a point v 2 V in the Hilbert space, it is convenient to work with the complete orthonormal

representation via a basis f jg of V expanding the velocity �elds in linear combinations

v(x; t) =
X
j

�j j(x; t) : (11)

Since the velocity �elds are real, the �;  can be constructed to be real which is assumed throughout. Since linear

expansions of v 2 V identify the velocity �elds with the expansion coe�cients of the basis f jg, this forms the basis

for the gradient computations associated with deterministic Newton descent or the drift terms analogous to the small

deformation optimizations described in [117, 4].
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Algorithm 1 (Gradient Algorithm) De�ne the variation in terms of the basis representation

ĥ(x; T ) =

Z
T

0

�rt
x
ĥ(x; t)v̂(x; t)dt + x where v̂(x; t) =

1X
j=0

�̂j j(x; t) ; (12)

and �̂j ; j = 0; 1; : : : = arg min
�:v=

P
j
�j j2V

Z T

0

Z



kLv(x; t)k2dxdt + kh(T )I � I 0k2 : (13)

The gradient algorithm becomes initialize with n = 0, �
(0)
� = 0, and iterate n = 0; 1; : : : :

1. Calculate transformation:

h
(n)(x; T ) =

Z T

0

�rtxh(n)(x; t)v(n)(x; t)dt+ x where v(n)(x; t) =

1X
j=0

�

(n)
j
 j(x; t) : (14)

2. Calculate gradient perturbation:

�

(n+1)
j

= �

(n)
j
��

0
@Z




Z T

0

L
y
Lv

(n)(x; t) j(x; t)dxdt +
@

@�j

khI � I 0k2
�����
h=h(n)

v=v(n)

1
A (15)

where for landmark and image matching

landmark matching
@

@�j

khI � I 0k2 :

= 2

LX
l=1

[yl � h(xl; T )]t��1l
@h(xl; T )

@�j| {z }
@
@�j

D1(h)

;

image matching
@

@�j

khI � I 0k2 :

=
2

�
2

Z



(I(h(x; T ))� I 0(x))rI(h(x; T )) � @h(x; T )
@�j

dx| {z }
@
@�j

D2(h)

;

with

@h(x; T )

@�j

=

Z T

0

�rtxh(x; t) j(x; t)dt+
Z T

0

�rtx
@h(x; t)

@�j

v(x; t)dt :

After stopping, de�ne the �nal iterate as v̂
:

= v
(n+1) given by v̂(x; t)

:

=
P
j
�̂

(n+1)
j

 j(x; t), with ĥ(x; T ) de�ned by Eqn.

12.

Stable points satisfy the necessary maximizer conditions for the optimal transformation optimizing Eqns. 12, 13.

The endpoint variational condition on the di�eomorphism
@h(T )

@�j
follows from the standard perturbation argument

assuming su�cient smoothness. De�ne the perturbations

h(x; T ) =

Z T

0

�rtxh(x; t)v(x; t)dt + x where v(x; t) =
X
j0

�j0 j0(x; t) (16)

h�(x; T ) =

Z
T

0

�rt
x
h�(x; t)v�(x; t)dt + x where v�(x; t) =

X
j0

�j0 j0 (x; t) + � j(x; t) : (17)

The partial derivative at the end point condition becomes

@h(x; T )

@�j

:

= lim
�!0

1

�

h�(x; T )� h(x; T )
�

= lim
�!0

1

�

 Z
T

0

�rt
x
h�(x; t)v�(x; t)dt �

Z
T

0

�rt
x
h(x; t)v(x; t)dt

!
(18)

=

Z
T

0

�rt
x
h(x; t) j(x; t)dt +

Z
T

0

�rt
x

@h(x; t)

@�j

v(x; t)dt : (19)

Notice the fundamental role of the transport ODE in the variation of the distance term.
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Remark 1 Lattice and eigenfunction implementation. Wang solves the PDE numerically on the lattice using

discrete approximations to the di�erential operators in space. Divide 
 � [0; T ] into a discrete lattice (
� [0; T ])
�

of

pixels of �xed size, then  jk(x; t) has it's support on lattice site (xj ; tk) 2 (
� [0; T ])
�
. De�ne L� to be the discretized

version of L = �ar2 � br � r + cI with di�erence approximations for the Laplacian, gradient, and divergence. Wang

de�nes the operator to have no derivatives in time. The locality of the basis reduces the inner product to operations on

the lattice sites Z

�[0;T ]

L
y
Lv(x; t) j;k(x; t)dxdt = L

�y
L
�
v(xj ; tk) :

Since we have de�ned the norm through the di�erential operator L, kvk2
V
= kLvk2, choose  ; � to be the eigenelements

of L, L = � . In general the eigenfunctions are complex. For expansions of real-valued �elds, the expansions reduce

to a real expansion in sines and cosines determined by the various boundary conditions [4, 120]. Then linear expansions

of v 2 V identify the velocity �elds with the expansion coe�cients v(x; t) =
P

1

j=0 �j j(x; t). This makes the �rst cost

term particularly simple, Z



kLv(x; t)k2dx =
X
j

j�j j2j�j j2 :

The variations of the cost in the gradient algorithm Eqn. 15 becomes as follows for the lattice and eigenfunction

implementsions:

lattice �

(n+1)

jk
= �

(n)

jk
��

 
L
�y
L
�
v
(n)(xj ; tk) +

@

@�jk

khI � I 0k2
����
h=h(n)

v=v(n)

!
: (20)

eigenfunction �

(n+1)
j

= �

(n)
j
��

 
2j�j j2�(n)j

+
@

@�j

khI � I 0k2
����
h=h(n)

v=v(n)

!
: (21)

3.2 Greedy Algorithm for Image Matching

Christensen [4, 5, 6, 11, 13] has implemented a computationally e�cient algorithm for image matching which exploits

the fact that the operator does not di�erentiate in time. Discretize space-time 
� T into a sequence of indexed in time

optimizations solving for the locally optimal at each time transformation and then forward integrating the solution.

This is only a locally-in-time optimal method reducing the dimension of the optimization. Assume the deformation

�elds are generated from velocity �elds which are assumed piecewise constant within quantized time increments of size

�, tk
:

= k�; k = 0; : : : ;K
:

= T

�
giving v(x; t) = v(x; tk), for t 2 [tk�1; tk), De�ne the expansion functions only to be a

function of x 2 
,  k(x).

Algorithm 2 (Greedy Image Matching (Christensen [13])) The sequence of locally optimal transformations ĥ(�; tk); k =
0; 1; : : : ;K is given by ĥ(x; 0) = x with

ĥ(x; tk) =

Z
tk

tk�1

�rt
x
ĥ(x; �)v̂(x; tk)d� + ĥ(x; tk�1) with v̂(x; tk)

:

= v̂(x; t) t 2 [tk�1; tk) ; (22)

and v̂(�; tk) = arg min
v(�;tk)=

P
j
�j(tk) j

(tk � tk�1)
Z



kLv(x; tk)k2dx + 1

�
2

Z



jI(h(x; tk))� I 0(x)j2dx : (23)

For each k = 1; : : : ;K, the gradient algorithm for local in time updating of Eqns. 22, 23 initializes with n = 0,

�

(0)
j

(tk) = 0 for all j, and iterates n = 0; 1; : : : :

1. Calculate transformation for t 2 [tk�1; tk):

h
(n)(x; t) =

Z t

tk�1

�rh(n)(x; �)v(n)(x; tk)d� + ĥ(x; tk�1) where v
(n)(x; tk) =

X
j

�

(n)
j

(tk) j(x) : (24)

2. Calculate gradient perturbation:

�

(n+1)
j

(tk) = �

(n)
j

(tk)��

0
@(tk � tk�1)

Z



L
y
Lv

(n)(x; tk) j(x)dx +
@

@�j

kh(tk)I � I 0k2
����h=h(n)(tk)
v=v(n)(tk)

1
A(25)

@

@�j

kh(tk)I � I 0k2 =
2

�
2

Z



(I(h(x; tk))� I 0(x))rI(h(x; tk)) � @h(x; tk)
@�j

dx| {z }
@
@�j

D2(h(tk))

;
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and

@h(x; tk)

@�j

=

Z
tk

tk�1

�rt
x
h(x; t)) j(x)dt +

Z
tk

tk�1

�rt
x

@h(x; t)

@�j

v(x; tk)dt :

After stopping, de�ne the �nal iterate as v̂
:

= v
(n+1) given by v̂(x; tk)

:

=
P
j
�̂

(n+1)
j

(tk) j(x) with ĥ(tk) satisfying

Eqn. 22.

Remark 2 Lattice and eigenfunction implementations. Christensen et al. [13] has solved the PDE numerically

on the lattice using discrete approximations to the di�erential operators in space. Divide 
 into a discrete lattice 
�

of pixels of �xed size, then  j(x) has it's support on lattice site xj 2 
�. De�ne L� to be the discretized version of

L = �ar2 � br � r+ cI. Then the gradient equations of Eqn. 25 reduce to

�

(n+1)
j

(tk) = �

(n)
j

(tk) + �

0
@( tk � tk�1)L�y

L
�
v
(n)(xj ; tk) +

@

@�j

kh(tk)I � I 0k2
����h=h(n)(tk)
v=v(n)(tk)

1
A

: (26)

3.3 Landmark Deformation in the Lagrangian Frame

The equality constrained exact landmark matching sends � ! 0 giving the equality constrained problem in the limit.

For landmark matching, see [16] for the existence of the solution to the limiting problem

v̂ = argmin kLvk2 subject to yl = h(xl; T ); l = 1; : : : ; L :

Here we pose �l; l = 1; : : : ; L non-zero. For small numbers of landmarks, reparameterize the optimization problem

following Joshi [16] using the positions of the L-landmarks �l(�); l = 1; : : : ; L determined by the velocity �eld v(x; �):

�(t)
:

=

0
BBB@

�(y1; t)

�(y2; t)
...

�(yL; t)

1
CCCA

| {z }
3L�1

with
d�(x; t)

dt

= v(�(t; x); t) ; �(x; 0) = x ; x 2 
 : (27)

Following Joshi [16], for landmark matching choose operators of the form L = diag(�ar2+ brr �+cI) with a = 1; b =

0; c = 1, giving the 3�3 linear matrix diagonal di�erential operator L = diag(�r2+cI) with associated 3�3 covariance
matrix smoothing kernel K(x; y) and the 3L� 3L covariance matrix K(�(t) playing a fundamental role:

K(x; y)
:

= 2
p
c(2�)

5
2

0
B@ e

�

p
1
c
ky�xk 0 0

0 e
�

p
1
c
ky�xk 0

0 0 e
�

p
1
c
ky�xk

1
CA ; (28)

K(�(t))
:

=

0
B@ K(�(y1; t); �(y1; t)) : : : K(�(y1; t); �(yL; t))

...
...

...

K(�(yL; t); �(y1; t)) : : : K(�(yL; t); �(yL; t))

1
CA

| {z }
3L�3L

: (29)

It will be helpful to de�ne the notation for matrices and block matrices (K)ij to denote the ij entry or block, and

for vectors (A)i to denote the i-th entry.

Theorem 2 (Joshi(1997) [16]) The optimal di�eomorphism �̂(x; T ) =
R
T

0
v̂(�̂(x; t); �)d�+x with ĥ

:

= �̂
�1 minimizing

Eqn. 8 given by

v̂(�) = argmin
v

Z T

0

Z



kLv(x; t)k2dxdt+
LX
l=1

[xl � �(yl; T )]t��1l [xl � �(yl; T )] ; (30)

where v̂ satis�es

v̂(x; t) =

LX
i=1

K(�̂(yi; t); x)

LX
j=1

(K(�(t))�1)ij _̂�(yj ; t) and

_̂
�(yl; �)

l = 1; : : : ; L
= arg min

_�(yl;�)

l=1;:::;L

Z T

0

X
ij

_
�(yi; t)

t(K(�(t))�1)ij _�(yj ; t)dt+

LX
l=1

[xl � �(yl; T )]t��1l [xl � �(yl; T )] ;
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and K(�(t)) is the 3L� 3L covariance matrix of Eqn. 29, with inverse K(�(t))�1 the 3L� 3L matrix with 3� 3 block

entries (K(�(t))�1)ij ; i; j = 1; : : : ; L.

The power of working with the map � is that the optimization has been reduced from velocity �elds v(x; t) on


� [0; 1] to L velocity �elds _
�(yl; t); l = 1; : : : ; L on [0; T ]. For exact landmark matching, care must be taken as �! 0.

This is formulated and proved separately as a corollary in Joshi [16].

The algorithm for landmark matching reduces the problem to a �nite dimensional problem by de�ning the 
ows on

the �nite grid of �xed times of size �, tk
:

= k�; k = 0; 1; : : : ;K
:

= T

�
. Assume velocities piecewise constant within the

quantized time intervals, so that for t 2 [tk�1; tk), _
�(yl; t) =

�(yl;tk)��(yl;tk�1)

�
.

Algorithm 3 (Joshi(1997) [16]) With �̂(yl; 0) = yl; l = 1; : : : ; L, the �nite dimensional minimization over IR3LK

becomes

�̂(yl; tk)
l=1;:::;L;
k=1;:::;K

= arg min
�(yl;tk)

l=1;:::;L
k=1;:::;K

1

�
2

KX
k=1

LX
ij=1

[�(yi; tk)� �(yi; tk�1)]t
 Z

tk

tk�1

(K(�(t))�1)ijdt

!
[�(yj ; tk)� �(yj ; tk�1)]

+

LX
l=1

[xl � �(yl; T )]t��1l [xl � �(yl; T )] : (31)

The gradient algorithm for minimizing Eqn. 31 initializes with n = 0 and �(0)(yl; tk) = yl, l = 1; : : : L, k = 1; : : : ;K,

and iterates for n = 0; 1; : : : :

1. Calculate gradient perturbation for each �(yl; tk)
:

=

0
@ �1(yl; tk)

�2(yl; tk)

�3(yl; tk)

1
A
; l = 1; : : : ; L; k = 1; : : : ;K:

�
(n+1)(yl; tk)

:

=

0
B@ �

(n+1)
1 (yl; tk)

�

(n+1)
2 (yl; tk)

�

(n+1)
3 (yl; tk)

1
CA =

0
B@ �

(n)
1 (yl; tk)

�

(n)
2 (yl; tk)

�

(n)
3 (yl; tk)

1
CA��

0
B@

@

@�1(yl;tk)

�
P (�(n)(T )) +D1(�

(n)(T ))
�

@

@�2(yl;tk)

�
P (�(n)(T )) +D1(�

(n)(T ))
�

@

@�3(yl;tk)

�
P (�(n)(T )) +D1(�

(n)(T ))
�
1
CA ;

(32)

where for m = 1; 2; 3,

@

@�m(yl; tk)
D1(�(T )) = 1T (tk)

�
2��1

l
(xl � �(yl; T ))

�
m

@

@�m(yl; tk)
P (�(T )) = 2

LX
j=1

�Z
tk+1

tk

(K(�(t))�1)njdt(�(yj ; tk)� �(yj ; tk+1))
�
m

+ 2

LX
j=1

 Z tk

tk�1

(K(�(t))�1)njdt(�(yj ; tk)� �(yj ; tk�1))
!
m

+

LX
j=1

[�(yj ; tk+1)� �(yj ; tk)]t
@

R tk+1

tk
(K(�(t))�1)njdt

@�m(yj ; tk)
[�(yj ; tk+1)� �(yj ; tk)] ;

where

@

R tk+1

tk
(K(�(t))�1)njdt

@�m(yj ; tk)
=

Z
tk+1

tk

�
K(�(t))�1

@K(�(t))

@�m(yj ; tk)
K(�(t))�1

�
nj

dt ; (33)

and 1T (tk) = 1 for tk = T , and 0 otherwise.

After stopping, de�ne the �nal iterate as �̂
:

= �
(n+1), and

_̂
�(yl; t) =

�̂
(n+1)(yl; tk)� �̂(n+1)(yl; tk�1)

�

; t 2 [tk�1; tk) ; k = 1; : : : ;K ; (34)

with

v̂(x; t) =

LX
l=1

K(�̂(yl; t); x)

LX
j=1

(K(�̂(t))�1)nj
_̂
�(yj ; t) ; (35)

�̂(x; T ) =

Z T

0

v̂(�̂(x; t); t)dt + x ; for all x 2 
 :
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Remark 3 For choosing initial conditions, for the inexact landmark matching the identity map given by v(�) = 0 is

used for the initial condition. For exact landmark matching an initial condition is generated from the inexact landmark

matching solution following an approach suggested by Younes [121]. Construct an inexact landmark match to within an

�-ball of the target landmarks. The initial condition for exact matching is generated by linearly interpolating the inexact

landmark match onto the target points. This insures an initial condition which does not cross and maps the landmarks

exactly.

3.4 Brain Mapping

3.4.1 Whole brain matching.

We now show several results from mapping whole macaque brains studied in David Van Essen's laboratory and the

human hippocampus with Drs. John Csernansky, Michael Vannier and John Haller. Various such results have been

published previously [9, 10, 11, 13, 14, 15, 19, 20, 21, 23]. We begin with an experiment in which a macaque whole brain

numbered 87A was taken to be the template, and was mapped into various targets. First various sulcal curves were

de�ned associated with the extremal points of curvature the sulci. Using a dynamic programming algorithm, curves were

generated automatically corresponding extremal points of curvature [67, 68] using dynamic programming [70]. The gyri

and associated sulci were labeled in several whole brains. The sulcal maps constrain the transformation from one brain

to the other. The top left panel of Fig. 2 illustrates several of the sulcal fundus curves which have been identi�ed and

placed into the whole brains discretized to 16 points. The deformation �eld was constrained so that the corresponding

points were mapped one-to-one on each other.

These landmarks serve to de�ne the initial low dimensional maps. Such results are shown in Figure 2. The top

row of Figure 2 shows a 3-D surface rendering (left column) and of a 640� 540� 200 volume from the whole primate

brain number 87A which has been analyzed using the hierarchical mapping method. The dark lines are the sulcul maps

providing the landmarks. The middle panel shows the result of mapping 87A (left panel) to the target 90C using only

the sulcal line constraints to de�ne the transformation. The right panel shows the target brain 90C. The middle row of

Figure 2 shows corresponding sections through the template 87A (left) the target 90C (right) and the deformed template

(middle). Notice that there is a large di�erence in the shape and positions of the major subvolumes (the thalamus and

the cortical folds) between the undeformed template and the target. Notice the improvement in the alignment of the

major subvolumes in the deformed template with the target after the deformation.

The bottom row of Figure 2 shows the �nal results of the large deformation mapping based on composing image

matching and landmark matching. The transformation was parameterized by one displacement vector and velocity

vector at each voxel location corresponding to � 20� 106 parameters for the large deformation image matching. The

transformation of the image volume matches both the target macaque brain surface topography and its internal structure.

The generation of the maps allow for meaningful di�erential geometric features such as volumes and surfaces to be

obtained. Notice how they are topologically di�erent when viewed in 2-D, although since the algorithm works completely

in 3-D it moves the folds and surfaces around so as to make them match. Examine the third column which is the

transformed template. The sections look exquisitely similar to the corresponding target (right column).

3.4.2 Cortical and hippocampus surface matching

Examine the space of two-dimensional smooth surface manifolds S such as the cortical and hippocampul surface. We

map the surfaces by restricting the di�eomorphism on the volume 
 � IR
3 to the embedded submanifolds S � 
.

Since the maps h 2 H are di�eomorphisms, their restrictions are di�eomorphisms carrying smooth tangent structures,

curvature, etc. Construct the surfaces as triangulated graphs with attached tangent spaces and shape operator associated

with locally quadratic charts. The geometry of the quadratic charts transform in the standard way with the Jacobian of

the mapping transforming the tangent space, and curvature transformed by the Hessian of the transformation [20]. This

forms the basis for the distance between the family of surfaces. For construction of the triangulated graph, contours

de�ning the neuro-anatomically signi�cant substructures of interest are hand traced in each of the sections of the template

volume image. From these brains a triangulated graph representing the surface of the substructure is generated using

the Marching Cubes algorithm[122]. The top row of Figure 3 shows triangulated graphs representing the cortical and

hippocampul surfaces.

S is assumed to be a smooth two-dimensional di�erentiable sub-manifold of 
 � IR
3, each point in the surface has

a neighborhood N di�eomorphic to an open subset D of IR2, D � IR
2
x
�! �
x�1

N � S ; where x(�) is a di�eomorphism at

least twice di�erentiable. The second order local charts (D; x) are established at each point in the surface by locally

approximating the surface up to the quadratic terms in a Taylor series. Let Txi(S) be the tangent space of S at the

point xi with orthonormal span (b
(1)
xi ; b

(2)
xi ) with unit normal given by the cross-product nxi = b

(1)� b(2). The quadratic
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Figure 2: Top row: Left panel shows the volume rendering of the template 87A with sulcal fundus curves depicted

superimposed. The middle panel shows the template mapped to the target 90C (middle) using only the sulcal line

constraints to de�ne the transformation. The right panel shows the target brain 90C. Middle row: Shows corresponding

sections through the template 87A (left) the target 90C (right) and the deformed template (middle) using only the

anatomically de�ned sulcal lines. Bottom row: Shows a sections of the template 87A (left panel) mapped to the target

90C (right panel) using both large deformation landmark matching composed with large deformation image matching.

Data were taken from the laboratory of David Van Essen of the Department of Anatomy and Neurobiology of Washington

University.

patch approximating the surface passing through the point xi is written as for (u; v) 2 D, x(u; v) 2 S,

x(u; v) = xi + ub
(1)
xi

+ vb
(2)
xi

+ ((u; v)Ci(u; v)
t)nxi ; (36)

where Cxi is the symmetric 2 � 2 matrix of the form Cxi =

�
l m

m n

�
. The matrix Cxi and tangent space b1; b2

are estimated at each point on the surface by a minimum mean squared error algorithm and is based on the scheme

described by Hamann[123] following the procedure in Joshi et al. [10].

Once the local charts are established at each vertex, one can study up-to-second-order intrinsic geometrical properties

of the surfaces. The maximum and minimum eigenvalues �1; �2 of the matrix Cxi are the principal curvatures, with

the unit vector directions t1 and t2 in which these extreme values occur called the principal directions. The principal

curvatures describes the maximum and minimum curving degrees of the surface. Shown in the bottom row of Figure

3 is a rendering of a cortical surface in the 87A whole macaque brain (left panel) and a hippocampus surface (right

panel). The mean curvature is mapped through a gray color scale. Bright areas represent areas of high positive mean

curvature while dark areas represent areas of high negative mean curvature. For construction of the triangulated graph,

contours de�ning the neuro-anatomically signi�cant substructures of interest are hand traced in each of the sections of

the template volume image from which a triangulated graph representing the surface of the substructure is generated

using the Marching Cubes algorithm[122].
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Figure 3: Top row:Left panel shows section of the triangulated graph representing the cortical surface; right panel shows

the hippocampus surface. Bottom row: Left panel shows a renderings of the cortical surface with the mean curvature

mapped to a gray color scale; right panel shows a rendering of the hippocampal surface with the mean curvature mapped

to the same scale. Bright areas represent areas of high positive mean curvature while dark areas represent areas of high

negative mean curvature.

Shown in Figure 4 are results obtained from transformation of the neocortical surface of the template 87A into

the target whole brain volume 90C. This was accomplished by generating the whole brain maps h : 87A ! 90C, and

then restricting the di�eomorphisms to the surfaces h : S87 ! S90C. The template surface is transformed under the

di�eomorphic whole brain volume map shown in Figure 2. The whole brain surface was reconstructed in the target by

generating a triangulated graph and estimating the C2 surface using the procedure described in Joshi et al. [10]. The

top row shows the resulting quadratic chart which have been surface rendered to exhibit the surface. The bottom row

shows a section of the surface embedded in the volume, demonstrating the interface between the white and gray matter.

3.4.3 Hippocampus matching

Figures 5, 6 show similar results for matching hippocampi in human MRI brains. Two anatomies I; I 0 were selected

containing the hippocampus. Figure 5 illustrates the procedure used for hippocampus matching. The top row, left

panel shows the template, with the middle panel showing the template mapped through a coarse landmark registration

aligning the cube of tissue containing the hippocampus in the target. The right panel shows sections through the target

hippocampus cube. The bottom row shows the cube of hippocampus tissue in the template transforming under the

large deformation image matching procedure.

The top row, left and middle panels of Figure 6 shows sections through the 128�128�128 cubes of tissue containing
the hippocampus in the template I and target I 0. Inserted into both anatomies are the two-dimensional closed sur-

face containing the volume of hippocampus. The intersection with the anatomical volume of the hippocampus surface

is depicted via the black line in the anatomical MR section. The bottom row shows the smooth surface mapped in

the template via the volume di�eomorphic transformations. The template was mapped onto the target hippocampus;

the left panel shows the template surface, the middle panel shows the target surface, the right panel shows the trans-

formed template surface. These surfaces were generated by transforming the template hippocampus through the volume

transformations carrying the template onto the targets (see Joshi et al. [20]).
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Figure 4: Top row: Left panel shows the C2 surface in the template 87A; right panel the surface mapped through the

volume transformation into 90C. Bottom row: Left panel shows a section with the C2 surface embedded in the whole

macaque template brain; the right panel shows the same section with the template C2 surface mapped through the

transformation to the target.

4 Small Deformations

It would be nice to be able to place the distance measure �(�; �), directly on the transformations in H, conjecturing,
for example, that H is a Hilbert space with distance between elements consistent with the norm and inner product of

the Hilbert space. However, in general the group H of di�eomorphisms is curved, addition is replaced by the law of

composition. Viewing the elements as vectors in which composition is addition is not valid. This is the fundamental

basis behind the transport equation and its introduction in [13, 6, 5]; the kinematic nonlinearity is fundamental to large

deformations. Assuming addition of a vector space results in inconsistencies, the resulting distance between elements

not necessarily being symmetric since the inverse as a vector may not be a di�eomorphism. For small deformations,

these problems approximately disappear and the small deformation solution has an approximate inverse. This will of

course only arise in the special setting in which the �nal time di�eomorphism is virtually identical to an �-scaled version

of it's tangent at the identity:

h(x)
:

= x� u(x) � x� �v(x; 0)| {z }
u(x)

:

Then the energy measure may be associated with the �-small deformations, a positive de�nite quadratic form associated

directly with the transformation h itself. In the small deformation setting, this energy approximately corresponds to the

one studied above, an energy minimized uniquely at the identity, for example khk2
L
= kL(h� I)k2. As above, assume

throughout operators of the form L = �ar2 + brr �+c with at least two-derivatives.

4.1 Small Deformation Matching

4.1.1 Landmark matching.

For small deformations, the large deformation matching reduces to the small deformation solution studied by various

authors [39, 41, 28, 116, 29, 117, 4, 124]. For exact and inexact landmark matching (see Joshi [16]), choose the 3 � 3

linear matrix di�erential operator of the form L = diag(�r2 + cI). Assume h(xl) matches to landmark yl which is a
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Large Deformation Image Transformation

Coarse Registration Target

Landmark Transformation

Template

Figure 5: Figure illustrates the procedure used for hippocampus matching. Top row: Left panel shows the template,

middle panel shows the template mapped through a coarse landmark registration aligning the cube of hippocampus

with the target, right panel shows the hippocampus cube. Bottom row: Left panel shows the template hippocampus,

middle panel shows the cube transforming based on image matching after the initial alignment, and right panel shows

the target.

small deformation with noise variance �l. Include the a�ne motions by allowing the template to carry the a�ne motions

(A; a) : yl 2 IR3 7! Ayl + a 2 R3
; A 2 GL(3); a 2 R3

: (37)

Following Joshi [9, 16] the small deformation cost is minimized according to ĥ(x) = x� û(x) with

û; Â; â = arg min
u;A;a

Z



kLu(x)k2dx+
LX
l=1

[u(xl)� (xl �Ayl � a)]t��1l [u(xl)� (xl �Ayl � a)] : (38)

This gives the optimal small deformation

û(x) =

LX
l=1

0
B@ e

�

p
1
c
kxl�xk 0 0

0 e
�

p
1
c
kxl�xk 0

0 0 e
�

p
1
c
kxl�xk

1
CA

| {z }
/K(xl;x)

0
@ �̂l1

�̂l2

�̂l3

1
A

| {z }
�l

(39)

with

0
B@ �̂1

...

�̂L

1
CA =

0
B@ K(x1; x1) + �1 : : : K(x1; xL)

...

K(xL; x1) : : : K(xL; xL) + �L

1
CA
�1 0B@ x1 � (Ây1 + b̂)

...

xL � (ÂyL + b̂)

1
CA

0 =
X
l

�l ; 0 =
X
l

�ly
t

l
: (40)

Changing the operator to L = r2 translates to the problems of Kent [124] with covariance operator proportional to the

absolute distance K(x; y) / diag(kx� yk):
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Figure 6: Top row: Left panel shows sections depicting the intersection of the surface in the template volume MRI;

middle panel shows the target volume; right panel shows the template transformed. Bottom row: Left panel shows the

template surface; middle panel shows the target surface; right panel shows the mapped template surface.

4.1.2 Image Matching

For small deformation image matching, h(x)
:

= x� u(x); x 2 
 assume u 2 V a Hilbert space with norm kuk2
V

:

= kLuk2.
For image matching, the small deformation problem becomes ĥ(x) = x� û(x) with

û(�) = argmin
u2V

Z



kL(x� u(x))k2dx +
Z



jI(x� u(x)) � I 0(x)j2dx : (41)

Choosing L in the class L = �a4� brr �+cI gives [4]; for b = 0 gives [117].

Algorithm 4 Gradient Algorithm for Small Deformation Image Matching Initialize with n = 0, �
(n)
� = 0, and

iterate n = 1; 2; : : : calculating and perturbing the transformation:

h
(n)(x)

:

= x� u(n)(x) ; u(n)(x) :=
1X
j=0

�

(n)
j
 j(x) ; (42)

�

(n+1)
j

= �

(n)
j
��

�Z



L
y
Lu

(n)(x) j(x)dx � 2

�
2

Z



(I0(h
(n)(x))� I1(x))rI0(h(n)(x)) �  j(x)dx

�
: (43)

Remark 4 Reproducing the drifts and gradients in [117, 4], expand u(�) in a complete orthonormal basis  k(x) with

L k = �k k eigenfunctions of the space operator L. The gradient in Eqn. 43 reduces to the following form:

�

(n+1)

j
= �

(n)

j
��

�
j�j j22�(n)j

� 2

�
2

Z



(I0(h
(n)(x)) � I1(x))rI0(h(n)(x)) �  j(x)dx

�
: (44)

4.2 Empirical Template Construction in the Small Deformation Setting

For small deformations a template coordinate system can be constructed from averages of transformations. Empirical

estimation of the templates for the various subpopulations of interest use the ideas of minimum mean-squared esti-

mation(MMSE) for generating the template. Assume a metric distance based on the quadratic energy kL(h � I)k2.
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Intuitively, the template yet to be discovered should be de�ned to be the element Itemp 2 I which requires the lowest

average energy deformation onto the population of anatomies. The template representing the population is de�ned to

be the image I 2 I minimizing the overall energy of the transformation of the population to the template. We now show

that for small deformation clusters, a template Itemp can be generated by choosing any element of I which is � close to

the cluster, mapping it to the population, and de�ning the template as the average map applied to I0.

The important property for �-small deformations is that composition approximately involves moving along the tangent

of each transformation; thus the inverse is approximated by moving along the tangent in the opposite direction. For

this de�ne �-small deformations, and anatomies which are �-close.

De�nition 2 Given h1; : : : ; hn � H a set of di�eomorphisms, then we shall say they are uniformly �-small, or just

�-small if for i = 1; : : : ; n,

hi(x)
:

= x� ui(x) = x� ��i(x) ; where (45)

sup
x2


�i(x) � 1 ; sup
x2


kL�i(x)k � K: (46)

Given a set of anatomies Ii; i = 1; : : : ; n with di�eomorphisms hi 2 H carrying one anatomy I to each element of

the population I
hi
�!
 �

h
�1
i

Ii, then we shall say the anatomies are uniformly �-close to I if hi
:

= I � ��i|{z}
:
=ui

are uniformly �-small.

The importance of these uniformly small deformations is that their compositions and inverses are to an error of order

O(�2) additive and � small as well.

(h1 � h2)(x) = x� u1(x) � u2(x)� u1(u2(x))
= x� u1(x) � u2(x)� �2r�1(y)(�2(x)� x) ; y 2 [x; u2(x)] ; (47)

=) h
�1(x) = x+ u(x) +O(�2) : (48)

This gives the approximate additive energy and approximate symmetry property required for a quadratic distance

function on the transformation to make sense for small deformations:

kh � h0k2 = k(h � h0)�1k2 +O(�4) = kL(u+ u
0)k2 +O(�4) : (49)

Notice, if there is one element I 2 I which is uniformly �-close to a set of elements, then the population is to error

O(�2), 2�-uniformly close:

hnm = hmh
�1
n = (I � ��m)(I + ��n +O(�2)) = I � �(�m � �n) +O(�2) : (50)

Theorem 3 Given are a set of anatomies In; n = 1; : : : ; N of landmarked or imaged brains with the property that there

is an I 2 I which is � close to each, I
hn
�!
 �

�n
:
=h
�1
n

In.

Then the small deformation template de�ned as

Itemp

:

= �
hI

:

= fI(�h(x)); x 2 
g ; where �h = 1

N

NX
n=1

hn ; (51)

has the property that the maps h0
n
; n = 1; : : : ; N , de�ning In = h

0

n
Itemp are of minimum energy to order O(�4).

The template is independent of which � close I 2 I is chosen for the mapping onto the set of N-anatomies.

Proof: Clearly �
h is �-small since

�
h =

1

N

NX
n=1

hn = I � � 1
N

NX
n=1

�n ; (52)

and therefore has inverse �h�1 = I+� 1
N

P
N

n=1 �n+O(�
2). To show Itemp

:

= �
hI is an image satisfying the minimum energy

distance to the family of anatomies, let In = h
0

n
Itemp with I = h

0
Itemp, and apply the extremum condition subject to

the constraints In = hn � h0| {z }
h0n

Itemp:

min
h0

E(h0) = min
h0

NX
n=1

khn h0k2L = min
�0

NX
n=1

kL((I � ��n)(I � ��0)� I)k2 (53)

= min
�0

NX
n=1

k�L(�n + �
0)k2 +O(�4) : (54)
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The map ĥ0 = I + 1
N
�

P
n
�n attains the minimum to error O(�4). Thus Itemp = �

hI with �
h = (h0)�1 = I � 1

N
�

P
n
�n +

O(�2). The construction of the template Itemp is independent of su�ciently close I 2 I to the population:

h
0

i = hi � (�h)�1 = I � �(�i �
1

N

NX
n=1

�n) +O(�2) ; (55)

=)
NX
i=1

E(h0i) =

NX
i=1

k�(�i � 1

N

X
n

�n)k2 +O(�4) =

NX
i=1

kui � 1

N

NX
n=1

un)k2 +O(�4) :

�

The notion of average maps being connected to small deformations is fundamental. Examine this issue in the setting

of a population of landmarked brains in which the minimum energy elements to the populations can be explicitly

calculated. Depending upon whether you state the problem in the forward or inverse maps, two di�erent minimum

energy elements are arrived at! De�ne In

�nm
�!
 �

hnm=�
�1
nm

Im satisfying �n(yl) = xnl, hn(xnl) = yl, l = 1; : : : ; L ; n = 1; : : : ; N .

There is the catastrophe of having two di�erent minimun energy templates, which are di�erent for the forward and

inverse formulations of the small deformation landmark matching.

Proposition 1 Examine Eqn. 38 with identity a�ne motion A = I; a = 0. The elements Îh; Î� 2 I :

= 
L minimizing

the inverse and forward energy maps to the population are given by

Î
h :

= arg min
y2
L

min
h:h(x)=y

NX
n=1

kL(hn � I)k2 = (
X
n

K(xn)
�1)�1

X
n

K(xn)
�1
xn ; (56)

Î
� :

= arg min
y2
L

min
�:�(y)=x

NX
n=1

kL(�n � I)k2 = arg min
y2
L

X
n

X
ij

(xin � yi)t(K(y)�1)ij(xjn � yj) : (57)

Proof: Optimizing the inverse and forward mapping �elds hn; �n gives

hn(x)� x =

LX
l=1

K(xnl; x)�
n

l with hn(xnj) = ynj � xnj =
LX
l=1

K(xnl; xnj)�
n

l ; (58)

�n(y)� y =

LX
l=1

K(yl; y)�
n

l with �n(yj)� yj = xnj � yj =
LX
l=1

K(yl; yj)�
n

l : (59)

Substituting gives the two minimizing templates in terms of minimum quadratic form of Eqns. 56, 57. �

Remark 5 For the forward maps, 

:

= IR
3, and assume L = diag(�ar2 + cI) a 3 � 3 diagonal operator, with 3 � 3

matrix of the form K(x; y) = diag(e��jx�yj) and de�ne the 3L � 3L matrix (K(z)) as in Eqn. 29, with 3 � 3 matrix

entries (K(z))ij = K(zi; zj). For the forward maps, Î� the minimizer solves the nonlinear problem for ŷl; l = 1; : : : ; L,

0 =
X
n

X
j

(K(ŷ)�1)lj(xnj � ŷj) +
X
n

X
ij

(xni � ŷi)t(K(ŷ)�1�lK(ŷ)K(ŷ)�1)ij(xnj � ŷj) (60)

where

(�lK(y))lj = ��e��jxl�xjj j 6= l

(�lK(y))il = ��e��jxi�xlj i 6= l

(�lK(y))ll = 0 l = 1; : : : ; L

(�lK(y))ij = 0 i 6= l; j 6= l

: (61)

4.3 Empirically Estimated Templates: Macaque and Hippocampus

To begin select one of the brain volumes I0 2 POP � I ; call it the provisory template. All anatomies are mapped

di�eomorphically to this one by calculating the set of di�eomorphisms so that I0

hn
�!
 �

h
�1
n

In, n = 1; : : : ; N . Shown in Figure 7

are results of mapping the three brains together to form one template. Panels 1-3 show the three whole brains with the

a�ne groupGL(3)
IR3 removed. The rightmost panel of Figure 7 shows the resulting M.M.S.E. template resulting from

the average of two deformation �elds. The global scale and skew parameters have been removed. The top row shows the

surface rendering, the bottom row sections through the whole brain. Notice how the geometry is exquisitely preserved in

the template. The template was generated by applying the empirical average transformation to the provisory template,
�
hI0.
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Figure 7: Empirical average of macaque monkey brains, top row showing whole brain volume and bottom row showing

sections. Left panel 1 shows 3D volume of 87A, panel 2 shows 3D volume of 90C, panel3 shows 3D volume of 93G, panel

4 shows 3D volume of the empirical average brain.

We have been studying the shape of the human hippocampus [15, 125]. Shown in Figure 8 are mapped hippocampi

from three of 30 subjects studied in [125]. The representative image volume cube I0 was mapped onto 30 target

volumes. The resulting transformations were used to transform the template hippocampus surface. Panels 1-3 show three

hippocampi which have been mapped from the initial representative surface S0, so that panels 1-3 show h1S0; h2S0; h3S0.

Panel 4 shows the result of mapping 30 hippocampi and generating the average map. The composite template surface

Stemp is generated by mapping the closed surface through the di�eomorphisms onto the populations of target hippocampi,

fhn; n = 1; : : : ; 30g. The representative surface S0 was then transformed to generate the template:

Stemp = �
hS0 � f�h(x) 2 
 : x 2 S0g ; �h = 1

N

NX
n=1

hn : (62)

Shown in panel 4 of �gure 8 are a template hippocampus generated from three of 30 subjects mapped studied in

[15, 125].

subject 1 subject 2 subject 3 mean of 30

Figure 8: Panels 1-3 show maps of the initial hippocampus to three in a population of 30 patients, h1S0; h2S0; h3S0
studied in Csernansky et al 1997. Panel 4 shows the composite template Stemp =

1
30

P30
n=1 hnS0.

5 Empirical Construction of the Prior Distribution

For constructing probability measures of anatomical variation, we characterize these maps as Gaussian processes indexed

over the manifolds on which the vector �elds are de�ned. Let's begin in this section with vector �elds de�ned on a

smooth connected compact manifold of the full unit cube volume M � 
 = [0; 1]3. Then we concentrate throughout
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in this section on the case of the unit cube M
:

= 

:

= [0; 1]3. In the unit-cube, we examine spectrum estimation

via Autoregressive modelling induced via di�erential operators from mechanics. To calculate the covariance operator

K : M �M ! IR
3, characterize the vector �elds using classical covariance and spectrum estimation of the operators,

extensions of ideas well known from the Theory of Stationary Processes [126]. For this maximum-likelihood estimation

(MLE) is applied directly to estimate from the maps POP the anatomical measures of variability. The covariances are

parameterized through the mechanics operators and their polynomial powers. This is for example, as we have done for

subcellular organelles in electron microscopy (see [7]).

Specify the vector �elds modulo the identity h = I � u as a three-dimensional Gaussian random �eld fU(x); x 2
M � [0; 1]3g completely speci�ed by its covariance matrix �eld which is a mapping K : M �M ! IR

3 � IR3 such that

K(x; x0) = K
t(x0; x) and for any integer n and any n-tuple of 3-vectors w1; : : : ; wn 2 IR3 and points x1; : : : ; xn 2 
,Pn

i;j=1 w
t
i
K(xi; xj)wj � 0.

The random �eld is associated with elements of the Hilbert space [127] with inner product < f; g >=
R
M
f
t(x)g(x)dx

assumed. De�ne fU(x); x 2 
g to be a G.R.F. on the Hilbert space with mean �eld � and covariance �eld KU if for all

f 2 H , < f;U > is Gaussian distributed with mean < f; � >, and variance < f;KUf >.

Construct the fU(x); x 2 Mg as a quadratic mean limit using a complete IR3-valued orthonormal basis f k; k =

0; 1; : : : g, and the U -�eld given according to

U(x)
q:m:
=

1X
k=0

Uk k(x) ; (63)

where Uk are independent Gaussian random variables with �xed means �k and variances �2
k
. The mean and covariance

operator of the �eld becomes

�(x) =

1X
k=0

�k k(x) ; KU =

1X
k=0

�
2
k
 k <  k; � > (64)

where <  k; � >=
R


 
�

k
(x) � dx. Eqn. 63 is meant as the quadratic mean limit minimally requiring the process to have

covariance KU with �nite trace so that
P
k
�
2
k
<1, with mean square integrable,

P
k
j�kj2 <1.

The orthogonal expansion reduces the covariance estimation problem to one of estimating the mean and covariance

of the orthogonal random variables Uk; (�k; �k); k = 1; : : : . Since the �elds are IR3-valued it is natural to assume the

eigen expansion is real. This is examined below, with the symmetry properties of the expansion understood to reduce

it to all real functions.

5.1 Di�erential and Di�erence Operators

Clearly, in the above formulation the mean and spectrum f�k; �2kg and therefore covariances are completely free, corre-

sponding to a non-parametric problem. Since only �nite many anatomies can be observed, the class of covariances are

restricted using symmetry properties associated with the physical deformation of the tissues. For this, the covariance and

random structure is viewed as arising through the fact that fU(x); x 2 
g is thought to be the solution of a stochastic

PDE of the type,

L U(x) =W (x) ; x 2 
 ; (65)

fW (x); x 2 
g a Gaussian random process with covariance KW .

We will be interested in spectral decomposition, so all of the operators will be normal, induced via di�erence and

di�erential operators. We shall use the translation operators in IR3, (Thf)(x) = f(x+h), to create spatially homogeneous

variability operators L, so that ThL = LTh;8h 2 
 of the form L =
P
h2H

A(h)Th with H � 
 a bounded �nite set of

points, and where the A(h)'s are 3� 3 normal matrices, so that

(Lf)(x) =
X
h2H

A(h)f(x+ h)

or limits of such �nite di�erence operators in the topology of L2(IR
3
;
) in which case the domain of L has to be suitably

restricted to the proper Sobelev space with norm associated with the continuum operator L. To associate the orthogonal

expansion of the Gaussian process, Eqn. 63, with the stochastic PDE of Eqn. 65, choose f�; �g the eigenelements of the
di�erential operator L according to L k(x) = �k k(x).

Thus far in our work the operators L arise via continuum mechanics construction [119], and correspond to various

mixtures of di�erential operators. We have focussed [13, 6, 5] on the Navier operator L = �a4 � br � r + cI .
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However, various forms arise, including the bi-harmonic [128] (describing small deformations energetics of thin plates),

Laplacian [117]. The general form of the eigenvalues and eigenfunctions assuming general mixtures of di�erential

operators are as follows. Since we will assume cyclo-stationarity of the operators on the unit-cube, they will have

eigenfunctions arising from complex exponentials. With x = (x1; x2; x3) 2 
 = [0; 1]3, the complementary variable

becomes !k = (!k1 ; !k2 ; !k3), !ki = 2�ki, i = 1; 2; 3, and the Fourier basis for periodic functions on [0; 1]3 takes the

form

e
j<!k;x>

; < !k; x >= !k1x1 + !k2x2 + !k3x3 :

As well, since the random U -�elds are IR3 valued, for each !k there corresponds three orthogonal eigenfunctions. It

leads to a natural indexing of the eigenfunctions and eigenvalues according to f (d)

k
; �

(d)

k
; d = 1; 2; 3g. The general form

for the eigenfunctions and eigenvalues determines the covariance of the resulting Gaussian process.

Theorem 4 Let L be a non-singular cyclo-stationary linear normal di�erential operator on 
 = [0; 1]3 of the form

L =

0
@ A11 A12 A13

A21 A22 A23

A31 A32 A33

1
A where Ail =

nilX
m=1

ail(m)
@
pil(m)

@x

p
(1)

il
(m)

1 @x

p
(2)

il
(m)

2 @x

p
(3)

il
(m)

3

; (66)

and pil(m) =
P3

d=1 p
(d)

il
(m). The eigenfunctions are of the form  k(x) =

0
@ ck1e

j<!k;x>

ck2e
j<!k;x>

ck3e
j<!k;x>

1
A with the vector of constants

normalized kckk2 = 1, and eigenfunctions and eigenvalues for d = 1; 2; 3, and i; l = 1; 2; 3 satisfying the 3 � 3 matrix

equation:

�

(d)

k

0
B@ c

(d)

k1

c

(d)

k2

c

(d)

k3

1
CA =

0
@ A11(!k) A12(!k) A13(!k)

A21(!k) A22(!k) A23(!k)

A31(!k) A32(!k) A33(!k)

1
A
0
B@ c

(d)

k1

c

(d)

k2

c

(d)

k3

1
CA ; Ail(!k) =

nilX
m=1

ail(m)

3Y
d=1

(j!kd)
p
(d)

il
(m)

:

(67)

Proof: Applying L 
(d)

k
= �

(d)

k
 

(d)

k
gives Eqn. 67. �

In general the eigenfunctions are complex. For expansions of real-valued �elds, Uk = U
�

�k
, Uk =<  k; U >, so that

the expansions Eqn. 63 reduce to a real expansion in sines and cosines.

It is natural to perform the computations on the �nite lattices with fast Fourier transformation associated with the

discrete images. Restrict discussion to the class of discrete operators with periodic boundary conditions. The background

space becomes a discrete 3-torus, 
 = f0; 1; : : : ; N � 1g3 and the operators are N �N �N cyclo-stationary di�erence

operators with addition done modulo N .

The eigenfunctions and eigenvalues are of the same form as in the Theorem, but with the constants given by the

discrete Fourier series of the �nite di�erence coe�cients.

Corollary 1 Let the discrete indexed n = (n1; n2; n3) 2 f0; 1; : : : ; N � 1g3 cyclo-stationary operators L be of the form

LU =

0
@ (LU)1(n)

(LU)2(n)

(LU)3(n)

1
A =

0
@
P3

l=1

P
h2H

a1l(h)Ul(n+ h)P3

l=1

P
h2H

a2l(h)Ul(n+ h)P3

l=1

P
h2H

a3l(h)Ul(n+ h)

1
A

; (68)

with the operators assumed to have �nite support H. The eigenfunctions and eigenvalues f k; �kg solve the identical

matrix equation from Theorem 4, Eqn. 67, with the constants Ail the discrete Fourier transforms of the di�erence

coe�cients; for i; l = 1; 2; 3, k 2 f0; 1; : : : ; N � 1g3,

Ail(!k) =
X
h2H

ail(h)e
j<!k;h>

; !k = (
2�k1

N

;

2�k2

N

;

2�k2

N

) :

5.2 Gaussian Processes and Generalized ARMA Modelling

We shall induce the random IR
3-valued U -�elds via the linear non-singular operator equation LU = W , W noise. The

eigenfunctions and eigenvalues f (d)

k
; �

(d)

k
g derived for the linear di�erential operators determine the covariance of the

resulting Gaussian process.

Let Un(x); x 2 
 be a random IR
3-valued process given by Un(x) =

Pn

k=0

P3

d=1 U
(d)

k
 

(d)

k
(x), the random variables

U

(d)

k
; k = 1; 2; : : : orthogonal complex Gaussian random variables with mean and variance EU

(d)

k
= �

(d)

k
, EjU (d)

k
�

�

(d)

k
j2 = j�

(d)

k
j
2

j�
(d)

k
j
2
. De�ne L to be a non-singular linear operator having the complete orthonormal basis of eigenelements

L 

(d)

k
= �

(d)

k
 

(d)

k
. Then,
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Theorem 5 Let (i) the noise W have covariance KW =
P
k

P3

d=1 j�(d)k j2 (d)

k
( 

(d)

k
)y and (ii)

P
k

P3

d=1

j�
(d)

k
j
2

j�
(d)

k
j
2
<1 withP

1

k=0

P3

d=1 j�(d)k j2 <1.

Then fU(x); x 2 
 = [0; 1]3g is a quadratic mean Gaussian process

U(x)
q:m:
=

1X
k=0

3X
d=1

U

(d)

k
 

(d)

k
(x) satisfying LU(x) =W (x) ; (69)

with mean � =

1X
k=0

3X
d=1

�

(d)

k
 

(d)

k
; covariance KU =

1X
k=0

3X
d=1

�

(d)2

k

�

(d)2

k

 

(d)

k
( 

(d)

k
)t : (70)

If the operator is a di�erence operator, the Gaussian process has mean and covariance of the form

� =
X
k2ZZ3

N

3X
d=1

�

(d)

k
 

(d)

k
; KU =

X
k2ZZ3

N

3X
d=1

j�(d)
k
j2

�

(d)2

k

 

(d)

k
( 

(d)

k
)y : (71)

Proof: That the quadratic mean limit exists follows from the trace class assumption
P

k

P3

d=1

j�
(d)

k
j
2

j�
(d)

k
j
2
<1 implying

that EkP1

k=n+1

P3

d=1U
(d)

k
 

(d)

k
k2 ! 0; call the limit point U . That U satis�es LU =W , examine LUn�W as n!1.

There are two cases associated with whether W being colored and well de�ned (trace class) or "white noise".

Case (i): if W is trace class then

X
k

X
d

j�(d)
k
j2 <1 =) EkLUn �Wk2 =

1X
k=n+1

3X
d=1

j�(d)
k
j2 ! 0 as n!1 : (72)

Case (ii): if W is white then LU = W in the generalized distribution sense, and the expansion of W (x) =P
1

k=0

P3
d=1Wk k(x), Wk orthogonal Gaussian random variables, mean 0 and variance 1 only makes sense in inte-

gration against smooth test functions (notice KW is not �nite). The left and right hand sides of Eqn. 69 must be equal

when integrated against any smooth test function:

Ej
Z
f
T (x)(LUn(x) �W (x))dxj2 = Ej

1X
k=n+1

3X
d=1

W

(d)

k
< f;  

(d)

k
> j2 (73)

(f � square integrable) =

1X
k=n+1

3X
d=1

j < f;  

(d)

k
> j2 ! 0 as n!1 : (74)

To show that �u;KU are the mean and covariance apply the de�nition of the mean of a Gaussian �eld. Take the

random variable < f;U > then this is Gaussian distributed with mean < f; �u > and variance < f;KUf > for any test

function f . That this follows,

E < f;U >=

1X
k=0

3X
d=1

< f;  

(d)

k
> EUk =

1X
k=0

3X
d=1

< f;  

(d)

k
> �k (75)

proving the �rst claim. That KU is the covariance

Ej < f;U > j2 = Ej
1X
k=0

3X
d=1

< f;  

(d)

k
> Ukj2 =

1X
k=0

3X
d=1

j < f;  

(d)

k
> j2 j�

(d)

k
j2

j�(d)
k
j2

(76)

proving the second claim. �

Remark 6 It may appear as if the complex Gaussian process has not been completely speci�ed since the correlation

between the real and imaginary parts of the expansion coe�cients have not been speci�ed, R(Uk); I(Uk), only their

total variance. We assume the complex process is circularly symmetric, so that ER2(Uk) = EI
2(Uk) =

j�kj
2

2
, and

ER(Uk)I(Uk) = 0.
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5.3 Empirical estimation of the operator: Generalized ARMA Modelling

The operator L plays the role of a pre-whitening operator. Introduce the basic generating operator L0, and an associated

polynomial operator consisting of powers of L0. This will be a generalization of AR modelling; the operator L becomes

the polynomial

L = p(L0) = adL
d

0 + ad�1L
d�1
0 : : :+ a0I

The unknown parameters ad; ad�1; : : : a0 estimated from the data. Assume the set POP �U = fu1; : : : ; uNg of anatom-
ical maps are given, from which the empirical estimates of the expansion coe�cients are generated: ukn =<  k; un >

;n = 1; : : : ; N . It then follows that the eigenvalues are polynomials of the original eigenvalues.

Corollary 2 Assume the random U-�eld satis�es the non-singular operator equation LU = W , W a Gaussian process

with covariance KW =
P
k

P3

d=1 j�(d)k j2 (d)

k
( 

(d)

k
)y. Let L = p(L0) =

Pd

i=0 aiL
i
0, L0 a cyclo-stationary operator on


 = [0; 1]3 with eigenvalues and eigenfunctions f�0
k
;  kg.

Then L has identical eigenfunctions f kg as given by Theorem 4, with eigenvalues satisfying

�k = p(�0
k
) = ad(�

0
k
)d + ad�1(�

0
k
)d�1 � � �+ a0 : (77)

The variances of the random expansion coe�cients are given by EjU (d)

k
� �(d)

k
j2 = j�

(d)

k
j
2

jp(�0
k
)j2
.

The maximum-likelihood estimate of the spectrum is given by �̂
(d)2

k
=

j�
(d)

k
j
2

j�̂kj
2

where �̂k = p̂(�0
k
) =

P
d

i=0 âi(�
0
k
)i and

fâi; i = 0; 1; : : : ; dg satisfy the MLE equations:

@

@aj

logp(data; a) = 0 ) �N
X
k

(�0
k
)j

p̂(�0
k
)
+
X
k

p̂(�0
k
)(�0

k
)j

�

(d)2

k

NX
n=1

jukn � �kj2 = 0 ; j = 0; 1; : : : d : (78)

We will be estimating parameters of di�erential operators which are mixtures L =
P
i
aiL

(i). But in this estimation

problem L depends upon parameters and to solve the maximum likelihood problem iteratively in general requires re-

computation of the eigenvectors. However, if the operators commute, this will not be necessary.

Corollary 3 Let L =
P
i
aiL

(i), L(i) a normal di�erential operator of the form given in Theorem 4, with the property

that each of the operators commute L(i)
L
(i0) = L

(i0)
L
(i). Then L

(i)
; i = 1; 2; : : : have identical eigenfunctions L(i)

 k =

�

(i)

k
 k for all i. The eigenvalues of L =

P
i
aiL

(i) are �k =
P
i
ai�

(i)

k
.

The maximum-likelihood estimates satisfy �̂k =
P
i
âi�

(i)

k
where fâi; i = 1; : : : g satisfy the MLE equations:

@

@aj

logp(data; a) = 0 ) �N
X
k

�

(j)

k�P
i
âi�

(i)

k

� +
X
k

�P
i
âi�

(i)

k

�
�

(j)

k

�

(d)2

k

NX
n=1

jukn � �kj2 = 0 ; j = 0; 1; : : : d :

(79)

Proof: To be proven is that the eigenfunctions are equal for the various operatorsL(i)
; i = 1; 2; : : : . The eigenfunctions

take the form e
j<!k;x>

�
c

(i)

k1 ; c
(i)

k2 ; c
(i)

k3 ;

�T
, implying that for the operators to have the same eigenfunctions we must show

c

(i)

k
= c

(i0)

k
. Since the operators L(i)

; L
(i0) commute, the matrices (A(i)); (A(i0)) from Eqn. 67 commute implying they

have the same simple eigenvectors associated with their simple eigenvalues. Thus c
(i)

k
= c

(i0)

k
. �

Remark 7 Stationary Navier elasticity operator. For the elasticity operator [4] L = �ar2 + br � r + cI, the

operator matrix from Theorem 4 has entries Aii = �ar2 + b
@
2

@x2
i

+ c, i = 1; 2; 3, and Ail = +b @
2

@xi@xl
, i 6= l, with

Aii(!k) = ak!kk2 � b!2ki + c i = 1; 2; 3 ; (80)

Ail(!k) = �b!ki!kl i 6= l : (81)

The eigenelements take the form

 

(1)

k
(x) = �1(!k1e

j<!k;x>
; !k2e

j<!k;x>
; !k3e

j<!k;x>)T ; �

(1)

k
= �(2a+ b)k!kk2 + c ;

 

(2)

k
(x) = �2(�!k2ej<!k;x>; !k1ej<!k;x>; 0)T ; �

(2)

k
= �ak!kk2 + c : (82)

 

(3)

k
(x) = �3(!k1!k3e

j<!k ;x>
; !k2!k3e

j<!k;x>
;�(!2k1 + !

2
k2
)ej<!k;x>)T ; �

(3)

k
= �ak!kk2 + c ;
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with the coe�cients � scaling each eigenvector to unit energy

�
(1) =

s
1

k!kk2
; �

(2) =

s
1

!
2
k1
+ !

2
k2

; �
(3) =

s
1

(!2
k1
+ !

2
k2
)k!kk2

: (83)

Since the operator is self-adjoint, �k = ��k, the real eigen elements become f (d)

k
+  

(d)

�k
; 2�

(d)

k
g. Now consider the

maximum-likelihood estimation of the parameters (a; b; c) associated with L = �aLA + bL
B + cI, with LAu = 4u,

L
B
u = 5 � 5u. Examine the method for calculating the eigenvalues. Estimating L (i.e. a,b, and c) from anatomical

data depends upon the parameters (a; b; c). To solve the maximization problem iteratively would require re-computation

of the eigenfunctions. This is not necessary due to the fact that LA; LB; I are normal and commute implying they have

identical eigenfunctions. Notice the eigenfunctions are independent of a; b; c as predicted by Corollary 3.

Denote the eigenvalues of A and B by f�(d)A
k
g and f�(d)B

k
g, then �(d)

k
= (�a�(d)A

k
+ b�

(d)B

k
+c) since the eigenvalues

just add because of the commutativity, Corollary 3. In this case

�

(1)A

k
= �(!2

k1
+ !

2
k2
+ !

2
k3
) ; �

(2)A

k
= �(!2

k1
+ !

2
k2
+ !

2
k3
) ; �

(3)A

k
= �(!2

k1
+ !

2
k2
+ !

2
k3
) ;

�

(1)B

k
= �(!2

k1
+ !

2
k2
+ !

2
k3
) ; �

(2)B

k
= 0 ; �

(3)B

k
= 0

�

(1)C

k
= 1 ; �

(2)C

k
= 1 ; �

(3)C

k
= 1 :

Hence the eigenvalues only have to be computed once, even though the coe�cients a; b; c change during the non-linear

estimation procedure.

5.4 What Spectral Representations Can Be Reached?

From the above, we have a method for estimating the cyclo-stationary parametrically de�ned spectra generated from

a primitive operator L0. But the question arises, how general a family of operators can be obtained from L0?, or

equivalently, how general a family of cyclo-stationary spectra?. To illuminate, restrict to the class L of discrete self-

adjiont operators with periodic boundary conditions, 
 = ZZ
3
N

the discrete 3-torus and the operators as N � N � N
arrays of circulant type. These operators all commute and have the same eigen-vectors  k =  k1k2k3 with the eigenvalues

�k; k = (k1; k2; k3) 2 ZZ
3
N

of L0 given by corollary 1. Some may be multiple, which will be the case typically if the

operator has symmetry properties. Let the corresponding multiplicities be

mk = mk1k2k3 ; k1; k2; k3 = 1; 2; : : :N :

For this, de�ne the operators generated from from polynomials of L0 as L(L0) � L:

L(L0)
:

= fL = p(L0) : p(A) =

dX
i=0

aiA
ig : (84)

We will show that if an operator has lower multiplicites than the generating operator L0 it cannot be obtained from L0.

For example, if L0 has the eigen-values (2; 2; 3; 3; 4; 4; 5; 5) so that the multiplicities are 2, then we can get as an example

L 2 L with the eigenvalues (1; 1; 5; 5; 4; 4; 3; 3) or (1; 1; 1; 1; 7; 7; 6; 6), but not one with eigenvalues (1; 2; 9; 9; 8; 8; 7; 7).

Theorem 6 An operator L 2 L can be obtained as a polynomial in L0, L 2 L(L0), if its multiplicities are not less than

those of L0:

mk � m0
k
:

Proof: Write the operators L0 and L in spectral decomposition

L0 =
X
k

�kPk ; L =
X
k

�
0
kPk ; (85)

where Pk is the projection operator down to the sub-space spanned by  k:

Pk =  k <  k; � >: (IR3)ZZ
3
N ! spanf kg : (86)

Notice, operators being normal implies eigenfunctions are orthogonal. For any polynomial p(�) transforming L0 to L,

L = p(L0), we obtain the transformed eigenvalues �L
k

= p(�0
k
). It remains to show that there is a polynomial that

makes the transformed eigenvalues equal to the ones prescribed for L: p(�0
k
) = �

L

k
; k = 1; : : :N3. We have two �nite
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sets �0 = f�0
k
g;�L = f�L

k
g of numbers, the distinct eigen-values of L0 and L respectively and we can therefore �nd a

polynomial of some degree d such that the numbers in the �rst set are mapped into the numbers in the second. The

only case when this is not possible is when j�j > j�0j but this can be ruled out if the multiplicities behave as required

in the proposition. �

Essentially, this theorem is a statement of operator symmetry. The new variability operator L should not have

less symmetry structure than the original one L0. It is therefore not advisable to choose as �rst approximation an L0

operator with a lot of symmetry. This answers de�nitively how general a class of auto-regressive spectra can be obtained.

Remark 8 1-D and 3-D Laplacian examples. It is informative to examine two examples, 1-dimensional and 3-

dimensional cases. In 1-D consider the second di�erence operator

L0u(n) = u(n+ 1) � 2u(n) + u(n� 1);n 2 ZZN :

The eigen-values are then

�
0
k = 2(cos

2�kn

N

� 1); k = 0; 1 : : :N � 1 :

Say that N is even; the odd case is dealt with in the same way. Then the multiplicities m0
k
= 2, for all k so that if

L 2 L is to be expressed as a polynomial in L0 it must have double eigen-values. But the eigen-values of any symmetric

circulant matrix L = (cn�m;n;m = 1; 2 : : :N) are proportional to �k /
P
n
cnexp

j2�kn
N . Since the matrix is symmetric,

cn�m = cn�m, the c-sequence is even and the eigen-values appear in pairs. Hence L can be expressed as a polynomial

and to use the class L implies no loss of generality.

Examine the 3-D discrete Laplacian L0 = � which has the eigen-values

�
0
k = 2(cos

2�k1

N

+ cos
2�k2

N

+ cos
2�k3

N

� 6) :

This operator has more symmetry. Not only is there the symmetry �
0
�k1k2k3

= �
0
k1k2k3

, but as well the symmetries

�
0
k2k1k3

= �
0
k1k2k3

, and so on. In this case the restriction to the class L is essential.

5.5 Probabilistic Representations of Submanifold Surfaces

The beauty of the general de�nition of fU(x); x 2 
g as a Gaussian random �eld through it's inner product with

functions in the Hilbert space is that it immediately generalized to more general background spaces such as surface

submanifolds S � IR
3. We are interested in 2-dimensional manifolds associated with embedded surfaces such as the

hippocampus. We have been involved in quantifying the variation of the shape of the hippocampus subvolumes in brains

via magnetic resonance imagery [55, 56, 14, 15] for inference of neuropsychiatric disease. To quantify the shape of the

hippocampus, we use complete orthonormal bases representing the normal deviations of populations of hippocampi.

To construct the variability representation, de�ne the primary starting hippocampal surface to be a 2-dimensional

closed smooth manifold S. Then a Gaussian random �eld U(x); x 2 S is speci�ed by its covariance matrix �eld,

mapping K : S � S ! IR
3 � IR3. Notice this is a Gaussian �eld on the submanifold S. The Gaussian �eld U(x); x 2 S

is constructed using a complete orthonormal basis de�ned on the template hippocampus S, so that the basis expands

all square integrable vector �elds on S. The U -�eld becomes U(x) =
P
k
Uk k(x), where Uk are independent Gaussian

random variables with �xed means �k and variances �2
k
. The mean and covariance operator of the �eld

� =
X
k

�k k ; KU =

1X
k=1

�
2
k k 

y

k
: (87)

The means and variances are estimated from the family of maps.

The maximum-likelihood estimates for the mean and variances of the orthogonal Gaussian random variables Uk �
N(�k; �

2
k
) given the set of anatomical maps hn(x)

:

= x � un(x); n = 1; : : : ; N from a Gaussian random �eld with

mean-�eld and covariance (�;KU ) given by Eqn. 64 becomes

�̂k =
1

N

NX
n=1

<  k; un > ; �̂
2
k
=

1

N

NX
n=1

j <  k; un > ��̂kj2 : (88)

To generate complete orthonormal bases on a C2 surface M we use �nite element codes for thin shells analogous to

that done in the non-statistical setting in [49] as well as principle components methods. For the �nite elements methods,

the basis and variances are chosen to correspond to di�erential operators associated with thin elastic shells ( see [129]

for details ). The di�erential operator derived from the linear shell theory of elasticity is discretized into a di�erence
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operator. The eigen vectors and the eigen values f( k; �k)g of the di�erence operator are computed numerically and used
as the orthonormal basis. To model the elastic surface and compute the corresponding eigen vectors and eigen values

f( k; �k)g we use the �nite element package ADINA (see [130] for details). This approach allows for the generation

of the complete orthonormal basis of \Surface Harmonics" for any smooth geometry. The familiar example are the

spherical harmonics which are the eigen functions of the Laplacian operator on the surface of the sphere. Shown in

the left panel of Figure 9 are are four surface harmonics for the hippocampus. All surface harmonics were generated

using the software package ADINA. A template hippocampus was generated with smooth geometry, from which ADINA

numerically calculated the small deformation energetics corresponding to thin elastic shells. The lowest order surface

harmonics are always the linearized rigid-body modes of translation and rotation and are in the null space of the elastic

operator. Herein we concentrate on our principle components approach. Begin by de�ning the composite template

surface Stemp. Associate with the set of imagery In; n = 1; : : : ; N the surfaces Sn; n = 1; : : : ; N of two-dimensional C2

closed surfaces. Choose representative S0 as the provisory C
2 surface and constructing on it a triangulated graph along

with a family of compatible locally quadratic charts at every point in the graph. This is depicted in Figure 5 showing

the starting hippocampus. The representative anatomy I0 is mapped to the family I0

hn
�!
 �

h
�1
1

In. The composite template

surface was generated by mapping the closed surface S0 through the di�eomorphisms onto the family of target surfaces

according to S0

hn
�!
 �

h
�1
1

Sn. The template becomes

Stemp = �
hS0

:

= f�h(x) 2 
 : x 2 S0g ; �h = 1

N

NX
n=1

hn : (89)

Such a template generated from 30 average maps is depicted in panel 4 of Figure 8.

ADINA-PLOT VERSION 6.1.4, 26 JUNE 1996
FREQUENCY ANALYSIS OF A HIPPOCAMPUS

X

YADINA
MODE_SHAPE
MODE 7
F = 0.3038

MODESHAPE

0.05618

XVMIN 24.4
XVMAX 109.
YVMIN 47.8
YVMAX 100.

X

YADINA
MODE_SHAPE
MODE 8
F = 0.4201

MODESHAPE

0.06988

XVMIN 28.0
XVMAX 108.
YVMIN 47.8
YVMAX 101.

X

YADINA
MODE_SHAPE
MODE 9
F = 0.5720

MODESHAPE

0.05143

XVMIN 27.7
XVMAX 109.
YVMIN 46.2
YVMAX 100.

X

YADINA
MODE_SHAPE
MODE 10
F = 0.6216

MODESHAPE

0.06707

XVMIN 27.0
XVMAX 111.
YVMIN 47.2
YVMAX 100.

Figure 9: Left column shows the �rst four surface harmonics associated with the surface of the mean Hippocampus.

The surface harmonics are computed using the ADINA package. Right column shows the �rst two eigen shapes of the

left and right hippocampus generated from a population of maps of normals and schizophrenics. Taken from Joshi,1997

Phd. thesis

To construct the variability representation, de�ne the Gaussian random �eld U(x); x 2 S on the domain S is

completely speci�ed by its covariance matrix �eld, mapping K : S � S ! IR
3 � IR3. Notice this is a Gaussian �eld on

the submanifold S. The right panel of Figure 9 shows the �rst two eigenshapes generated from the empirical covariances

of the population of ten maps onto a population of ten anatomies.

To illustrate the variability present in the population, shown in Figure 10 are randomly generated hippocampi mixed

with actual hippocampi. These were generated by drawing Gaussian random variables for expanding the orthogonal

expansion, and then generating the transformation �eld applied to the template starting hippocampus.
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Figure 10: Figure shows real and randomly generated hippocampi generated from the empirically constructed distribu-

tion of 30 hippocampus maps. Taken from Joshi Ph.D. thesis.

Wang and Joshi et al. have found that scale and volume are not powerful discriminants of group di�erence in the

two populations; however, shape di�erence is. Shown in the top row of Figure 11 are the changes in mean hippocampal

shape seen in the right hippocampus of 30 subjects, 15 normal and 15 schizophrenic. Left panel shows di�erence between

the mean hippocampus between 15 schizophrenics and the 15 normals average hippocampus. Notice that the superior

and lateral aspects of the hippocampal head are deformed inwards in the schizophrenic group. This is consistent with

that found as well on the left side by Csernansky, Wang and others. To illustrate that the shape change is relatively

highly localized, the right panel shows the variability of 15 normal hippocampus variations around the mean. The color

display was generated by expanding the vector �elds in the identical 6 eigenfunctions which are used to generate the

p-value in the test, and plotting the variability of the �eld as a function of position on the hippocampus.

Based on these �elds, the optimal test statistics were computed for discriminating between the two populations. As

shown by Joshi, testing based on scale and volume gives no signi�cant discrimination, p = :19 and p = :27. The bottom

row of Figure 11 shows the jack-knifed log-likelihood ratio tests based on scale (left panel) and shape (right panel). Each

test had 29 �elds from which the empirical statistics means and covariances were calculated forming the optimal Bayes

test; the remaining �eld was then tested against these empircal means and covariances. This was repeated sequentially

30 times. Notice, the lack of separation for the scale test (left panel). In contract, notice the distinctive separation and

clustering of the shape statistics based on log-likelihood ratios (right panel). Use of the �rst six eigenvectors showed a

statistically signi�cant di�erent between the two groups with an F=2.68,p=0.040. [16].

Following Joshi [16], we have also examined distribution free testing on shape variation between the populations. The

above mentioned p-values were derived based on the assumptions that the populations Control and Schizophrenics was

were Gaussian distributed with di�erent means and common covariance. We have used Fisher's method of randomization

to derive a distribution free estimate of the level of signi�cance of the di�erence. In Joshi [16] we estimated empirically the

probability distribution via simulation from which the signi�cant p-value was computed. In the distribution free testing,

we similarly found signi�cant p-values (0:02) demonstrating a statistically signi�cant di�erence in the populations.
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Figure 11: Top row: Left panel shows di�erence between the mean hippocampus between 15 schizophrenics and the

15 normals average hippocampus. Right panel shows the variability of 15 normal hippocampus variations around the

mean expanding the vector �elds in the 6 eigenfunctions which generate the p-value. Bottom row: Shows the Bayesian

classi�cation log-likelihood ratio for the 15 controls and 15 normals jack-knifed sequentially 30 times. Left panel shows

the scale test, right panel the shape test based on 6 eigenfunctions. Taken from Joshi,1997 PhD. thesis.

6 Large Deformation Prior Measures

6.1 Large Deformation Prior Distribution

The large deformation prior is most naturally placed on the random velocity �elds and its associated Hilbert space

structure. The prior is induced on the space of di�eomorphisms by constructing transformations from 
ows corresponding

to IR3 valued Gaussian random velocity vector �elds. The velocity �elds are modelled as Gaussian random vector �elds

V (�) on 
 � [0; 1]
:

= [0; 1]4 � IR
4. If the velocity vector �elds are su�ciently smooth then the solution to the ODE

exists and de�nes a unique 
ow of di�eomorphisms. Smoothness will come as above by assuming the velocity �elds

are solutions of stochastic partial di�erential equations of the type L V = W , L a self-adjoint positive di�erential

operator. To simplify, L will di�erentiate in time and space giving smoothness in both variables, and we will assume

diagonal operators with the three components of the noise processW (1)
;W

(2)
;W

(3) assumed independent and identically

distributed. This implies the three components of the velocity vector �eld V (1)
; V

(2)
; V

(3) are also independent. This is

for convenience, and all results hold more generally.

It is convenient to index the single variable x 2 [0; 1]4. We now study the sample path properties of scalar Gaussian

random �elds V (x) 2 IR1
; x 2 [0; 1]4 of the type de�ned above where L is a constant coe�cient di�erential operator of

the form

L =

nX
m=1

a(m)
@
p(m)

@x

p1(m)
1 � � � @xp4(m)

4

+ � ; with

4X
l=1

pl(m) = p(m) : (90)

The eigenvalues and eigenfunctions L k(x) = �k k(x) are of the form

 k(x) = e
j2�hk;xi

; �k =

nX
m=1

a(m)

4X
l=1

(j2�kl)
pl(m) + � ; k 2 ZZ4

: (91)
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Also assume that in general the operator L is strongly elliptic of order q (Reed and Simon [131]) where for all but a

�nite k

Ref�kg = Ref
nX

m=1

a(m)

4X
l=1

(j2�kl)
pl(m) + �g � kkk2q :

Remark 9 The q power of the Laplacian, L = (�r2 + I)q has such a property, since with

r2 =
@
2

@x
2
1

+
@
2

@x
2
2

+
@
2

@x
2
3

+
@
2

@x
2
4

; (92)

then the eigenvalues are �k = k2�kk2 + 1; for Lq, �k = (jj2�kjj2 + 1)q.

Theorem 7 (Joshi [16]) Let V (x); x
:

= (x1; x2; x3; x4) 2 

:

= [0; 1]4 be a real-valued Gaussian random �eld de�ned in

the quadratic mean sense as above to satisfy the partial di�erential equation

LV (x) =W (x) ; x 2 [0; 1]4 ;
where L is strongly elliptic of order q and the noise process W (x) is assumed to have a spectral representation with

spectral variances variances j�kj2 bounded above by kkkp except on a �nite set F � ZZ
4. If 4q � 4� 2p > 4 then V (x)

has sample paths which are almost surely continuously di�erentiable.

Proof: To prove sample path continuity we use the Kolmogorov criteria following Amit and Piccioni [132]; then

V (x); x 2 IR4 is a:s: sample path continuous if and only if there exists constants �; �; c > 0 such that

EjV (x) � V (y)j� � ckx� yk4+� :
Since V satis�es the stochastic partial di�erential equation L V (x) = W (x), x 2 [0; 1]4, use the spectral represen-

tation giving

EjV (x)� V (y)j2 =
X
k2Z4

j�kj2
j�k j2

jej2�hk;xi � ej2�hk;yij2 =
X
k2Z4

j�kj2
j�kj2

(2� 2 cos 2�hk; x� yi)

=
X
k2Z4

j�kj2
j�k j2

(4 sin2 �hk; x� yi) �
X
k2Z4

j�kj2
j�k j2

cjhk; x� yij2

�
X
k2Z4

j j�kj
2

j�k j2
ckx� yk2kkk2

(a)

� ckx� yk2(c1 +
X

k2ZZ4=F

kkk2(p+1)
kkk4q ) ; (93)

where (a) uses the fact that L is strongly elliptical of order q.

To establish the Kolmogorof conditions with � = 6; � = 2, since V (x) is a zero mean Gaussian �eld, then V (x)�V (y)
is a zero mean Gaussian random variable with the moment generating function given by 	(s) = e

�2s2

2 =
P

1

l=1
�
2l
s
2l

2ll!
,

where �2 = EjV (x)� V (y)j2. Then for positive integer l = 3

EjV (x)� V (y)j2l =
2l!

2ll!
(EjV (x) � V (y)j2)l

� c(kx� yk2)l = ckx� yk4+2 for l = 3 : (94)

That the process has a.s. sample path continuity as the series converges for 4q � 2� 2p > 4.

To show it has a.s. continuously di�erentiable sample paths, examine the components of the derivative of the vector

�eld V 0(x) with mean square derivative, V 0(x) having spectral representation given by

V
0(x)

:

= (V 0

1(x); V
0

2 (x); V
0

3 (x); V
0

4 (x))| {z }
(
@V (x)

@x1
;��� ;

@V (x)

@x4
)

=
X
k2Z4

j2�kWk(!)

�k

e
j2�hk;xi

:

As V 0(x) is a Gaussian random vector �eld

EkV 0(x)� V 0(y)k2l � k
l

4X
j=1

E(V 0

j
(x) � V 0

j
(y))2l

= k
l
2l!

2ll!

4X
j=1

(E(V 0

j
(x)� V 0

j
(y))2)l : (95)
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It is enough to show that for each j, E(V 0

j
(x)� V 0

j
(y))2 � ckx� yk2. Using the strong elliptical property of L as above,

E(V 0

j (x)� V 0

j (y))
2 � c

X
k2Z4

�
2
kk2�kk2

jej2�hk;xi � ej2�hk;yij2
kkk4q

� ckx� yk2(c1 +
X

k2Z4=F

kkk2(p+2)
kkk4q ) : (96)

The series converges for 4q � 4� 2p > 4. �

6.2 Large deformation templates

Large deformation template construction proceeds assuming (
; I;H) is a homogeneous anatomy, and we assume the

background space 

:

= [0; 1]3 is compact, corresponding to a closed volume. Given are a set of N +1 landmarked brains

or imaged brains In; n = 0; : : : ; N � I de�ned on 
. The goal is to construct a brain Itemp 2 I which most closely

represents the population.

Empirical estimation of the templates for the various subpopulations of interest use the ideas of minimum mean-

squared estimation(MMSE) for generating the template. A crucial aspect of the approach is that the template coordinate

system is generated from averages of transformations, not from averages of the image data itself. The rational behind

this is that averages of images have no convincingly biological interpretation in contrast to averages of deformations

that generate another deformation.

For large deformation maps, empirical averages of the vector �elds will not generate di�eomorphisms. This behooves

us to introduce a large deformation setting for understanding the maps. This is most naturally accomplished in the

vector �eld setting for understanding the velocity �elds.

Let fvn; n = 1; : : : ; Ng be the set of velocity �elds mapping I0 to In; n = 1; : : : ; N . Then the large deformation

template is de�ned to be �hI0 where �h satis�es the ODE with �v =
PN

i=1 vi:

@
�
h(x; t)

@t

= �rt
x
�
h
t(x; t)�v(x; t) ; h(x; 0) = x ; t 2 [0; T ] : (97)

If v(x; t) is continuously di�erentiable vector �eld on [0; 1] then by the existence and uniqueness theorem of O.D.Es,

the solution exists and is uniquely determined by the velocity �eld v(x; t) and the initial condition h(0; x) furthermore

it de�nes a unique di�eomorphism of 
 via the solution to the above O.D.E. By a continuously di�erentiable vector

�eld, following [3] we mean that each of the coordinate functions vi(x; t); i = 1; 2; 3 are continuously di�erentiable with

respect to xi; i = 1; 2; 3 and t.

Joshi [16] has constructed a large deformation average under the landmark di�eomorphisms. Examine the whole

macaque cryosection brains 87A; 90C; 93G shown in Fig. 12 in which the gyri and associated sulci have been labeled.

The sulci and gyri can be de�ned precisely in terms of the geometrical properties of the cortical surface using the notions

of ridge curves and crest lines (extremal points of curvature) following [70, 24]. In Fig. 12 each of the sulci have been

identi�ed and placed into the whole brains discretized to 16 points.

Following Joshi [16] the brain 87A was selected as the provisory template I0 and was mapped on to the two brains 90C

and 93G, using the large deformation landmark matching algorithm yielding the velocity �elds which when integrated

through the ODE generate the map of I0
:

= 87A onto the two brains 90C; 93G. An average velocity �eld �v was constructed

by averaging over the velocity �eld maps, and the O.D.E de�ned in Eqn. 5 was solved yielding the average di�eomorphic

transformation �h(x; T ). Panel 4 of Figure 12 is the resulting the large deformation template representing the population.

Notice that as the velocity �elds used to generate the empirical mean of the population were driven only by the identi�ed

landmarks on the fundus of the fundus beds in the sulci in the three brains the external Calcarine fundus curve present

only in 90C and not used for generating the transformations is not represented in the large deformation template shown

in Figure 12.

Shown in Figure 13 are six sections through the large deformation template generated from the population.

7 Surfaces

Examine two-dimensional smooth surface manifolds S such as the cortical and hippocampul surface.
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Figure 12: Panels 1,2,3 shows three brains 87A , 90C and 93G in which the gyri and associated sulci which have been

labeled. The sulci and gyri are de�ned precisely in terms of the geometrical properties of the cortical surface using the

notions of ridge curves and crest lines (extremal points of curvature). Panel 4 shows the average template brain.

7.1 Large Deformation Mapping of Surfaces

The goal is to de�ne a distance between elements in the orbit. De�ne the space of anatomical imagery to be two

dimensional manifold surfaces under the group of di�eomorphisms restricted to actions on the template surface:

S :

= HStemp :

= fhStemp; h 2 Hg where hStemp :

= fh(x) : x 2 Stempg : (98)

Notice, the action of H on Stemp is restricted to the surface. This is assumed throughout. The surfaces are triangulated

graphs with attached tangent spaces and shape operator associated with locally quadratic charts, as described in with

the geometry of the quadratic charts transforming in the standard way with the Jacobian of the mapping transforming

the tangent space, and curvature transformed by the Hessian of the transformation [20]. This forms the basis for the

distance between the family of surfaces.

Assume S to be a smooth two-dimensional di�erentiable sub-manifold of class two. Then each point x 2 S has a

tangent space and orthonormal basis of the tangent plane Txi(S) and b
(1)
xi ; b

(2)
xi at each point xi, with the unit normal

nxi . The quadratic form Cxi and tangent space basis b1; b2 are estimated at each point on the surface by a minimum

mean squared error algorithm described in section 3.4.2.

Once the local charts are established at each vertex, intrinsic geometrical properties of the surface can be studied.

In de�ning distances between surface we exploit the principal curvatures �1; �2 of Cxi describing the maximum and

minimum curving degrees of the surface. corresponding to the eigen values of the 2� 2 shape operator matrix Cxi . Let

S; S
0 be the template and target surfaces with a map restricted to the surface taking the point on the template x 2 S

to a point on the target surface x0 2 S0:

h 2 H : x 2 S 7! h(x) = x
0 2 S0 :

Let the tangent planes at the points be T (x) and T (x0). How should the distance between surfaces be de�ned?

We want the map h to carry the di�erential-geometric features modulo the special euclidean group SE(3). The latter

means that we are operating in equivalences relative to the Euclidean group since a local translation/rotation should
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Figure 13: The �gure shows sections from the large deformation template brain generated from the population 87A,90C

and 93G by composing the di�eomorphism generated from the average of velocity �elds with the initial anatomy �
hI0.
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not a�ect the value of the criterion. Thus we are constructing a representation invariant to this group. The translation,

with three degrees of freedom, should take x 7! x
0, followed by a rotation, with two degrees of freedom, that takes

Tx ! Tx0 . Since the dimension dimSE(3) = 6 there remains one degree of freedom for the rotation around the normal

to the tangent element. The in�nitesimal properties of order two of the surface element after this transformation can

be expressed through two homogeneous quadratic forms, say with matrices M and M 0 representing curvature. Use the

Hilbert-Schmidt norm between M and the rotated (around the normal) M 0, asking that it be minimized, the Hilbert-

Scmidt norm of a symmetric matrix M = (mij) becomes kMkHS =
qP

i;j
m

2
ij
=
p
tr(M2). We should now �nd the

rotation, say O 2 SO(2), that makes the in�nitesimal structures as close as possible. The following solves this extremum

problem, providing the proper energy for the surface matching.

Lemma 1 With the symmetric 2� 2 matrices M and M 0 having the principal curvatures the eigenvalues �1 � �2 and

�
0

1 � �02, then

min
O2SO(2)

kM �OM 0
O
tk2
HS

=

2X
k=1

(�k � �0k)2 :

Proof: Assume without loss of generality that M is in diagonal form M = diag[�1; �2], then using the property that the

trace is invariant with respect to rotations gives

min
O2SO(2)

kM �OM 0
O
tk2
HS

= min
O2SO(2)

tr[(M �OM 0
O
t)2]

(a)
= min

O2SO(2)
tr(M2) + tr((M 0)2)� 2tr[MOM

0
O
t] (99)

= max
O2SO(2)

tr[MOM
0
O
t] (100)

and (a) follows from the invariance the trace with respect to rotations. The last trace equals
P2

k=1 �kxk where xk =

(OM2O
t)kk . But whatever O is we have

2X
k=1

xk = tr(M 0) =

2X
k=1

�
0

k
= constant ; (101)

= �1x1 + �2(constant� x1) = (�1 � �2)x1 + �2 � constant : (102)

This implies that to maximize x1 should be chosen as large as possible, since

x1 = uM
0
u
t;u = O

�
1

0

�
;

with x1 which cannot be made larger than �01. Then x2 = �
0

2 and the stated result follows by inserting these values into

Eqn. 100. �

This forms the basis for our surface matching. De�ne k � k2 to be the norm-squared on functions indexed over the

surface S.

Problem Statement 2 (Surface Matching) Given are surfaces S; S0 with curvature �elds �k(�); �0k(�); k = 1; 2. The

optimal match ĥ of S to observation S0 becomes

ĥ(x; T ) =

Z T

0

�rtxĥ(x; t)v̂(x; t)dt+ x where (103)

v̂(�) = argmin
v2V

kvk2
V
+

Z
S

2X
k=1

(�k(h(x)) � �0k(x))dm(x) ; (104)

where m is the surface measure for S. For landmark matching, replace the curvature penalty by landmark distances.

As described below, we have implemented Eqn. 104 with landmarks only, not with curvature maps.
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7.2 Cortical Topography and Flat Maps

The mammalian cerebral cortex has the form of a layered, highly convoluted thin shell of gray matter surrounding white

matter, and is one of the most striking features of the brain. The cortex contains a complex mosaic of of anatomically

and functionally distinct areas which play a tremendously important role in understanding brain functions[78]. To aid

in the understanding of the geometry and the functional organization of the cortex, Van Essen [65, 38] has championed

the approach of visualizing and comparing brains via cortical 
at maps. Figure 14 shows the cortical surface and the

associated 
at map generated by Van Essen, depicting the complex functional topography of the cortex. The left panel

shows a colored cortical surface representing the various areas of the cortex; the middle panel shows the Van Essen

group's 
attened representation depicting the areas in the Felleman-Van Essen map.

Figure 14: Left panel shows the whole cortical surface labelled in Felleman Van Essen 79O brain. Middle panel shows

the 
attened 79O brain with cortical areas. Right panel shows the Brodman partitioning. Surfaces and data are courtesy

of Van Essen et al. 1997.

To accommodate individual variation in the cortical topography across brains, we use landmark transformation tools

as developed in Joshi [16] applied to the 
at maps of various individual cortical surfaces [23]. Shown in the right panel

of Figure 14 is the now classic Brodman areas displayed in a 
attened representation. Shown in the top row of Figure

15 is an illustration of the geometrical features associated with the curvature of the cortical surface such as the sulci

and the fundi that were identi�ed on both the 
at maps. These features are used as the landmarks for driving the

deformation algorithms. Shown in Figure 16 is the result of the deformation process. The left panel of Figure 16 shows

the deformed 
at map corresponding to the partitioning schemes by Brodmann. Shown in the right panel is the overlay

of the deformed partitioning schemes by Brodmann on the partitioning scheme by Felleman and Van Essen. The bottom

row of �gure 16 shows the correspondence of the geometrical fundus features after transformation with �xed variance

in the landmark matching. Right panel shows the resulting transformation of the grid in the large deformation surface

matching.

8 Sulcus and Gyral Curves of the Neocortex

Modern whole brain cryosection imaging provides excellent high resolution data required for study of such anatomical

features of cortex [133, 78] such as the arrangement of the sulcal �ssures visible throughout the cortical surface of a

mammalian with major sulci and gyri now being catalogued in human atlases which and becoming available [38, 23].

Computational metrics de�ned by cortical geometry such as geodesic length is drawing the attention of the neuro-

science community in terms of the role of wiring length in the general layout of the nervous system [66]. Despite their

anatomic and functional signi�cance, the gyri, sulci and many stable cortical pathways consistently appearing in all

normal anatomies exhibit pronounced variability in size and con�guration [134]. Methods are beginning to appear for

characterizing their variation [135]. We now examine methods for de�ning extremal curves on triangulated graphs via

dynamic programming, constructing probability laws for characterizing their shape and variability, and matching curves

across brains.

8.1 Dynamic Programming Generation of Sulcus, Gyral and Geodesic Curves

The sulci and gyri exhibit strong features associated with their extrema of bending. The deepest beds of the sulci are

called the fundus beds; associated with the gyri are the crowns. The automated generation of fundus beds along with
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Figure 15: Top row: Figure shows the cortical geography as indicated by the fundi in Broadmann's maps (left panel) and

the mean curvature �eld for brain 79O Canonical Van Essen brain (right panel). Bottom row: The geometrical fundus

bed features identi�ed on the 
at maps and used as landmarks for the deformation process. Taken from Van-Essen et

al. 1997.

geodesics will now be discused, with the curvature sign reversed to generate the gyral crowns.

Empirical evidence [135, 38, 23] suggests that in most part of their length fundus beds resemble crest lines (see [67,

136]) corresponding to points where the maximal absolute principal curvature has a local maximum. There exist

algorithms for extracting ridge and crest lines from surface geometries [67, 69, 68], from which zero tracing algorithms

involving computing gradients of the curvature function are constructed. Crest lines and curves [67, 136, 68] are the loci

of points x 2 S where the maximal absolute principal curvature �max(x) has a maximum. Let the surface have local

quadratic approximation x(u; v) locally around x 2 S from Eqn. 36, then

x(u; v) = xi + ub
(1)
xi

+ vb
(2)
xi

+ ((u; v)Cx(u; v)
t)nxi ; (105)

with eigenvalues and eigenvectors

Cxti = �iti ; i = 1; 2 ; (106)

�argmaxi=1;2 j�i(x)j ; targ maxi=1;2 j�i(x)j : (107)

At these points, r�max � tmax = 0 for tmax the principal unit direction corresponding to the maximal principal curvature

�max. Such zero tracing methods are sensitive to noise. We take an alternate approach based on dynamic programming

for tracking optimal trajectories on surfaces similar to that done in boundary and artery tracking [137, 138]. The

problem of tracking such curves is posed as a control/optimization problem. We search for curves that pass through

regions of highest maximal curvature joinng the prespeci�ed start and end points (s; t) in the surface. For noise immunity,

instead of �nding the extremum of principal curvature using higher derivatives of curvature, we de�ne a sequentially

additive energy associated with candidate curves and use dynamic programming for its minimization. To apply dynamic

programming, we de�ne the cost of a candidate curve �(s; t) 2 P (s; t) to be
R
�(s;t)

(�max(x) �K)2dx, with K assigned
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Figure 16: Top row: Left panel shows Brodmann map after deformation to 79O Felleman and Van Essen brain; right

panel shows overlay of Brodmann on the partitioning scheme by Fellman and Van Essen. Bottom row: Left panel shows

the geometrical fundus features after transformation with �xed variance in the landmark matching. Right panel shows

the resulting transformation of the grid in the large deformation surface matching. Taken from Van-Essen et al. 1997.

the largest maximal curvature on the surface, and minimize over all such paths on the triangulated graph representation

of the surface. We note, for a surface symmetrical about a crest line, i.e. one where tmax is perpendicular to the crest

line, minimizing the above function gives (�max(x)�K)r�max � tmax = 0 implying r�max � tmax = 0 which is precisely

the equation for the crest line. For regions of the sulcus where the basin is 
at, �max is constant, and the minimizer of

the above functional produces shortest paths through these regions.

For generating geodesics, we adapt the continuum de�nition associated with length on the surface as measured by the

integral of the norm of the tangent vector along the curve. If s and t are points of a smooth connected surface S � IR3,

the intrinsic distance (Riemannian length) �(s; t) from s to t in S is the lower bound of the lengths of these curves.

The curve �̂ for which the minimum length is acheived is called a geodesic. Throughout we denote the triangulation of

points on the surface as i; j, and the set of coordinates in IR3 taken by the sites of the graph and or positions of the

triangle vertices as xi; xj 2 IR3.

De�nition 3 Given a two-dimensional triangulation of the surface fxi 2 Sg de�ne the platelet Pi of point i as the set
of triangles (with index-triples (j1, j2, j3) specifying their vertices) sharing xi as a common vertex Pi = [f(j1; j2; j3)jxi =
xj1 or xi = xj2 or xi = xj3g.

De�ne a path on the surface �(s; t) routed and terminated respectively in nodes s; t on the surface as

�(s; t)
:

= (s = j1; j2); (j2; j3) : : : ; (jk�1; jk); : : : ; (jN�1; t = jN ) ; such that jk 2 Pjk�1 ;8k ;

and the collection of all paths connecting (s; t) as �(s; t) 2 Ps;t(S).
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De�ne the N -length discrete geodesic and discrete fundus bed as cost minimizing paths given by

fundus(s; t)
:

= arg min
�(s;t)2Ps;t(S)

NX
k=1

d(jk; jk+1) (108)

where d(jk; jk+1)
:

=

�
(�max(xjk )�K)2 + (�max(xjk+1

)�K)2
2

+
(�max(xjk )� �max(xjk+1

))2

6

�
kxjk � xjk+1

k ;

geodesic(s; t)
:

= arg min
�(s;t)2Ps;t(S)

NX
k=1

d(jk; jk+1) (109)

where d(jk; jk+1)
:

=
q
(x1;jk � x1;jk+1

)2 + (x2;jk � x2;jk+1
)2 + (x3;jk � x3;jk+1

)2 :

Dynamic programming. For generating these curves and geodesics we follow Khaneja [70, 24] using dynamic

programming adapted to optimization on triangulated surfaces. Denote the �nite state space S of size kSk = N ; on

these triangulated graphs the positions of the nodes of the surface itself are the states. The goal is to compute optimal

shortest paths between the speci�ed initial states s and the �nal state t. Assuming that the optimal path has no more

that K nodes, the total number of paths of length K between points s and t are of the order NK . If the cost is additive

over the length of the path, dynamic programming reduces the complexity of the search algorithm to order of KN2.

Let ck(xk; xk+1) denote the cost incurred for the transition from state xk 2 S to xk+1 2 S at each time k. Suppression

of k dependence in c(i; j) means the cost is independent of time. We shall assume that c(i; j) � 0, and arcs of in�nite

cost c(i; j) =1 signify that there is no arc from node i to node j. An optimal path need not have more than N arcs (

number of nodes in the graph) and hence take no more than N moves. We formulate the problem as one of �nding the

optimal path in exactly N moves allowing degenerate moves from a node i to itself with cost c(i; i) = 0. The degenerate

moves signify that the length of the path may be less than N .

The e�ciency of dynamic programming on the triangulated graphs representing the surface is that the states spaces

Sk � S can be dynamically de�ned and of reduced complexity. Curves passing through a point on the graph must pass

through one of it neighbors (analogous to being in the tangent space for the continuum representation).

Algorithm 5 (Dynamic Programming Algorithm) Denote the optimal cost for getting from node i to node t in

(N � k) moves as Jk(i); i 2 S, k = 0; 1; � � � ; N � 1. Then the optimal N-length path J0(i) from i to t is given by the

�nal step of the following algorithm,

with JN�1(i) = c
N�1(i; t) ; and (110)

Jk(i) = minj=1;��� ;N fck(i; j) + Jk+1(j)g; k = 0; 1; � � � ; N � 2 ; i 2 S : (111)

De�ne the state spaces dynamically SN�1 = fiji 2 Ptg, Sk = fiji 2 Pj ; j 2 Sk+1g, and implement the algorithm

according to Initialize: Jk(i) 1 i 6= t, for all k, SN  t, Jk(t) 0;

For k  N � 1 down to 0 do

Sk  fi j i 2 Pj ; j 2 Sk+1g ; set ck(i; j); j 2 Sk+1; i 2 Sk ; (112)

with

JN�1(i) = c
N�1(i; t); i 2 SN�1 ; (113)

Jk(i) = minj2fSk+1

T
Pig
fck(i; j) + Jk+1(j)g; i 2 Sk; k = 0; 1; : : : ; N � 2 : (114)

Theorem 8 1. Geodesic generation. Given the costs for transition

c
k(i; j) = d(i; j)

:

=

q
(x1;i � x1;j)2 + (x2;i � x2;j)2 + (x3;i � x3;j)2 ; j 2 Pi (115)

c
k(i; j) = 1 for j 62 Pi ;

then the length J0(s) de�ned in the algorithm corresponds to a geodesic shortest path (not necessarily unique)

between nodes s and t:

geodesic(s; t)
:

= arg min
�(s;t)2Ps;t(S)

X
k

q
(x1;k � x1;k+1)2 + (x2;k � x2;k+1)2 + (x3;k � x3;k+1)2 ; :
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2. Fundus curve generation. Given the costs for transition

c
k(i; j) =

�
(�max(xi)�K)2 + (�max(xj)�K)2

2
+

(�max(xi)� �max(xj)2
6

�
kxi � xjk ; j 2 Pi ; (116)

c
k(i; j) = 1 ; j 62 Pi;

then the length J0(s) de�ned in the algorithm corresponds to an optimal fundus bed path between nodes s and t:

�̂(s; t)
:

= arg min
�(s;t)2Ps;t(S)

X
k

�
(�max(xk)�K)2 + (�max(xk+1)�K)2

2
+

(�max(xk)� �max(xk+1))2
6

�
kxk�xk+1k :

For a proof see [70, 24] which follows since the costs are additive over the curves.

Notice the cost of a discrete curve �(s; t) connecting (s; t) is de�ned using the corrected trapezoid rule approximation

for the curvature integral
R
�(s;t)

(�max(x)�K)2dx.

Figure 17: Macaque monkey fundus curves generated via dynamic programming and costs of Eqn. 116. Top row shows

Superior Temporal and Sylvian �ssure fundus curves generated in brains 87A and 93G. Bottom row shows the fundus

curves of the Central sulcus, Arcuate sulcus, Principal sulcus and Lunate sulcus generated on brain 95CL. Curves

generated as extremal points of principal curvature via dynamic programming.

The dynamic programming algorithm was used to extract fundus curves from the surface of the macaque monkey

brains 87A; 95CL from David Van Essen's laboratory. Shown in the top row of �gure 17 are the Superior Temporal and

Sylvian �ssure fundus curves generated in brains 87A and 93G generated using the costs of Eqn. 116. Bottom row show

the fundus curves of the Central sulcus, Arcuate sulcus, Principal sulcus and Lunate sulcus generated on 95CL. Curves

generated as extremal points of principal curvature via dynamic programming.

Shown in Figure 18 are results from the Visible Human cortex generated in David Van Essen's laboratory. Panel 1

shows the dynamic programming extracted superior temporal fundus on the Visible Human cortex generated by Van

Essen and Drury [23]. Panel 2 shows choosing multiple start and end points for the dynamic programming solution

�nding common 
ows on the surface. The paths are illustrated on 
attened Drury-Van Essen Visible Human 
at map

illustrating robustness of the solution. The algorithm was run for di�erent choices of the starting and end points. Notice

how the trajectories initiated at di�erent starting points merge into a common trajectory, emphasizing the optimality of

the path. The endpoint control formulation also allows for dealing with the presence of bifurcation, allowing for tracking

of individual branches of fundus beds. Panel 3 shows the dynamic programming generation of the superior temporal
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Figure 18: Visible human fundus curves generated via dynamic programming and costs of Eqn. 116. Top row: Panel

1 shows the dynamic programming extracted fundus on the Visible Human cortex; panel 2 shows choosing multiple

start and end points for the dynamic programming solution �nding common 
ows on the 
attened Drury-Van Essen

Visible Human 
at map illustrating robustness of the solution; panel 3 shows the dynamic programming generation

of the superior temporal sulcus jumping across the break connecting the start and end points which were manually

selected. panel 4 shows the dynamic programming solution choosing two start and end points giving a break in the

superior temporal sulcus; Bottom row: Panel 6 shows the main brainches of the Superior Temporal and Sylvian Fissure

fundus beds extracted using dynamic programming rendered on the Drury-Van Essen Visible Human 
at map; panel 7

shows the main branches of hand drawn Superior Temporal and Sylvian Fissure fundus beds drawn by Van Essen; panel

8 shows an overlay of the hand and automated fundus curves.

sulcus jumping across the break connecting the start and end points which were manually selected. These are rendered

on the Visible Human cortical 
attened surface. The bottom row panel 4 shows the dynamic programming generation

of the superior temporal sulcus when two start and end points are chosen allowing for a break.

The bottom row of Figure 18 shows comparison of automated generation of fundus curves and curves generated by

David Van Essen by hand. Panel 6 shows the main branches of the Superior Temporal and Sylvian Fissure fundus curves

extracted using dynamic programming rendered on on a Drury-Van Essen 
at map of the Visible Human [23]. Panel 7

shows the branches of the Superior Temporal and Sylvian Fissure fundus beds hand generated by Van Essen on the 
at

map. For comparison of accuracy, panel 8 (bottom row) shows an overlay of the hand and automatic generation of the

fundus curves illustrated on the 
at map [23]. Notice the exact correspondence.

Shown in Figure 19 are results from generating automatically the fundus curves of the Superior Temporal Gyrus

(STG) region from the Visible Male. The cortical surface was generated using the semi-automated surface generation

utilities of M. Joshi [139]. Left panel shows the fundus curve of the Superior Temporal Sulcus (STS), middle panel the

fundus curve of the Sylvian Fissure (SF) and right panel shows the crown of the STG. The curves were generated by

choosing the start and end points for the dynamic programming solution.

Shown in the left panel of Figure 20 are eight geodesics constructed on the cortical surface of the macaque after

manual selection of start and termination points. The gray matter de�ning the neocortical surface was hand segmented,

from which a triangulation was generated using Marching cubes [122] to have approximately 15000 nodes. The middle

panel shows 6 points which corresponds to origins of the various fundus beds which were used to compute geoedesic

distance: 1=superior point of Arcuate Sulcus, 2=superior point of Central Sulcus, 3=inferior point of Central Sulcus,

4=anterior point of Intra Parietal Sulcus, 5=inferior point of Arcuate Sulcus and 6=posterior point of Principal Sulcus.

The right panel shows the shortest geodesic distances that were computed in millimeters on the cortical surface. For

example, the geodesic distance from the Arcuate Sulcus to the 5 other points in millimeters were d(1; 2) = 47:07mm,

d(1; 3) = 63:62mm, d(1; 4) = 68:75mm, d(1; 5) = 39:29mm, d(1; 6) = 22:39mm.
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Figure 19: Figure showing the Superior Temporal Gyrus (STG) region in the Visible Male. Left panel shows the fundus

curve of the Superior Temporal Sulcus (STS), middle panel the fundus curve of the Sylvian Fissure (SF) and right panel

shows the crown of the STG.

1

4
5

6

2

3

1 2 3 4 5 6

1 0 47.07 63.62 68.75 39.29 22.39

2 47.07 0 70.75 61.85 70.76 63.62

3 63.62 70.75 0 19.15 36.1 55.88

4 68.25 61.85 19.15 0 49.0 66.30

5 31.29 70.76 36.1 49.0 0 19.77

6 22.39 63.62 55.88 66.30 19.77 0

Figure 20: Panel 1 shows eight geodesics generated on the neocortex by picking the start and end points manually. Panel

2 depicts geographical landmarks on the macaque cortex; labels 1, 2, 3, 4, 5, 6. Panel 3 shows a table of Riemannian

distances in millimeters between the prede�ned points. Data taken from the laboratory of David Van Essen, Washington

University.

8.2 Curve Matching via Frenet Induced Distance Metrics

We induce distance measures between curves following Khaneja [140] using the Frenet representation [136, 141], of curves

in terms of velocity, speed, and torsion. The Frenet distance measures provide the basis for di�eomorphic matching.

This is in the same spirit as the beautiful work on di�eomorphic matching of curves by Younes [71]. Let x(�) be a smooth
curve, x(s); s 2 [0; 1] parameterized via arc-length, and associate the orthogonal frame corresponding to the tangent

vector �eld, normal �eld, and binormal O(s)
:

= (T (s); N(s); B(s)); s 2 [0; 1] satisfying the ODE via the orthogonal

frame representation O(s) = [T (s); N(s); B(s)], where
dO(s)

ds
= F (s)O(s); O(0) = I , and de�ned via the Frenet velocity,

curvature, torsion representation:0
B@

dT (s)

ds
dN(s)

ds
dB(s)

ds

1
CA

| {z }
dO(s)

ds

=

0
@ 0 �(s)�(s) 0

��(s)�(s) 0 �(s)�(s)

0 ��(s)�(s) 0

1
A

| {z }
F (s)

0
@ T (s)

N(s)

B(s)

1
A

| {z }
O(s)

: (117)

Here F (�) is the skew-symmetric matrix describing the 
ow of the orthogonal frame of the curve through it's tangent

space, and the speed, curvature and torsion functions are given by

�(s) = k _x(s)k ; �(s) = k _x(s)� �x(s)k
k _x(s)k3 ; �(s) =

( _x(s)� �x(s)) � ...x (s)
k _x(s)� �x(s)k ; (118)
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for unit speed curves it is given by

� = 1 ; �(s) = kd
2
x(s)

ds
2
k ; �(s) = 1

k
2(s)

det

0
B@

dx1(s)

ds

dx2(s)

ds

dx3(s)

ds

d
2
x1(s)

ds2

d
2
x2(s)

ds2

d
2
x3(s)

ds2

d
3
x1(s)

ds3

d
3
x2(s)

ds3

d
3
x3(s)

ds3

1
CA : (119)

Identify the curves with their velocity �eld F (s); s 2 [0; 1]. De�ne the metric distance between curves x; x0 as �(x; x0)

by identifying them with their 
ow through the tangent space. Consider two simple regular curves x(s); x0(s); s 2 [0; 1],

then we are looking to establish a distance function �(x; x0), x; x0 smooth regular curves, that is invariant to spatial

position and orientation in the space. De�ne the di�eomorphisms restricted to the curve as � 2 � on the regular curves

x(�). The distance metric based on the energy associated with the 
ow through the tangent space is based on the

Hilbert-Schmidt norm of an n� n matrix to be kAk2
HS

= trAA
t.

De�nition 4 The distance �(�; �) between curves x; x0 2M(1) the space of smooth regular curves becomes

�(x; x0) = inf�2�:��x=x0�(x; x
0;�) (120)

where �(x; x0;�)
:

=

Z 1

0

tr (F x(s)� F x0(s))(F x(s)� F x0(s))t| {z }
kFx�Fx

0

k
2
HS

ds (121)

= b

Z 1

0

j�x(s)�x(s)� �x0(s)�x0(s)j2ds+ c

Z 1

0

j�x(s)�x(s)� �x0(s)�x0(s)j2ds :

This involves generating all possible di�eomorphisms mapping one curve to another and choosing the minimizer of

the above equation. This forms the basis for the curve matching. De�ne k � k2
V
to be the norm-squared on velocity

functions indexed over the curves.

Problem Statement 3 (Curve Matching) Given are curves x; x0 with skew-symmetric �elds F (�); F 0(�), 3�3 skew-
symmetric matrices encoding torsion-curvatures. The optimal match ĥ of x to observation x

0 becomes

ĥ(x; T ) =

Z
T

0

�rt
x
h(x; t)v̂(x; t)dt+ x ; (122)

v̂(�) :

= argmin
v2V

kvk2
V
+

Z 1

0

kF (h(s))� F 0(s)k2
HS
ds : (123)

Bipartite graph matching. For matching curves, we have not yet implemented Eqn. 123, instead we follow

the work of Bakircioglu [25] in which the cost function is associated with a bipartite graph which may be e�ciently

minimized over the space of discrete matches. For this, the discrete distance �� associated with discrete curves on the

triangulated surface is de�ned assuming the curves have piecewise constant curvature and torsion over segments:

�
�(x; x0;�)

:

= b

X
k

j�x
k
�
x

k
� �x0

k
�
x
0

k
j2�k + c

X
k

j�x
k
�
x

k
� �x0

k
�
x
0

k
j2�k :

In [25] Bakircioglu et al. has used a smoothness term that depends only on the velocity giving a discrete matching cost

according to

�̂

:

= argmin
�2�

a

X
k

j�x
k
� �x0

k
j2 + b

X
k

j�x
k
�
x

k
� �x0

k
�
x
0

k
j2�k + c

X
k

j�x
k
�
x

k
� �x0

k
�
x
0

k
j2�k : (124)

The discrete matching problem is solved by searching over all correspondences which minimize Eqn.124. Shown in Figure

21 are results of applying the bipartite matching to the Superior Temporal sulcus of two macaque whole brains measured

in the laboratory of David Van Essen. Panel 1 shows the match based on penalizing the speed, a = 1; b = 0; c = 0; panel

2 shows the match based on curvature a = 0; b = 1; c = 0; panel 3 shows the match based on torsion, a = 0; b = 0; c = 1.

The bottom row shows the same as above for the Arcuate sulcus of 87A matched to 90C.

8.3 Probability Laws on Curves based on the Frenet Representation

Fundus curves in the macaque have been classi�ed using standard nomenclature arising in [78, 135, 134]. Sulci exhibit

pronounced variability in size and shape, motivating the development of representations of sulcus bed variability. There

44



Figure 21: Top row: Figure shows the matching of the Superior Temporal sulcus of two macaque brains 87A and 93I

measured in the laboratory of David Van Essen. Panel 1 shows speed matching for parameters speed a = 1; b = 0; c = 0,

panel 2 shows curvature matching a = 0; b = 1; c = 0, panel c shows torsion matching a = 0; b = 0; c = 1. Bottom row:

Shows the same as above for the Arcuate sulcus of 87A matched to 90C.

are alternative representations available for describing fundus bed curves. Variability can be studied by inducing prob-

abilities on the space of a�ne group transformations as in [70, 21]. Herein we induce probabilities using the intrinsic

geometry of curves based on the Frenet characterization in torsion and curvature. To each curve x(s) parametrized by

arc length s associate the orthonormal frame �eld T;N;B. As per the Frenet representation, if x(�) is a unit speed curve

with curvature and torsion �elds �; � then T 0(s) = �N(s), N 0(s) = ��T (s) + �B(s), B0(s) = ��N(s). For the prior

distribution, associate the potential energy with the mean lengths, curvatures, and torsions �l; ��; �� :

U(l; �; �) = �

X
k

(lk � �
lk)

2 + �

X
k

(�k � ��k)
2 + 


X
k

(�k � ��k)
2
; (125)

where �; �; 
 are proportional to the total variance of the statistics around the mean. Shown in the left column of

Figure 22 are two macaque brains with hand generated curves of the deep folds. From these the empirical estimators of

the mean length, curvature and torsion functions of the fundus beds are computed for the M = 3 brains:

�̂
lk =

1

M

MX
m=1

l
m

k
; �̂�k =

1

M

MX
m=1

�
m

k
; �̂�k =

1

M

MX
m=1

�
m

k
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�̂
�1 =

1

MN

MX
m=1

X
k

(lmk � �̂
lk)

2
; �̂

�1 =
1

MN

MX
m=1

X
k

(�mk � �̂�k)
2
; 
̂

�1 =
1

MN

MX
m=1

X
k

(�mk � �̂�k)
2
:

To synthesize the fundus curves the random process flk; �k; �k; k = 1; � � � ; Ng is generated to be Gaussian, with

the discretized Frenet equations solved sequentially. Note the �rst two tangent vectors in the discrete representation

are undetermined expressing the fact that the patterns are in the equivalence set modulo the special Euclidean group.

Figure 22 shows results of such a probabilistic representation on fundi sampled to 50 points. The data for the fundus

beds was obtained from three macaque brains labelled 87A, 90C and 93G. The statistics on torsion and curvature were

computed. The middle column shows the mean fundus curves and varability around the mean curves. The top panel

(middle column) shows the mean sulcus beds as displayed on the mean brain (see [21]). The bottom panel (middle

column) shows sulcus beds synthesized from the Frenet equations driven by random curvatures and torsions sampled

from the empirically estimated prior distribution.

Bayes estimation of the fundus curves. Incorporating the prior on the shape of fundi into the dynamic

programming algorithm is straightforward. De�ne the curve �(s; t) 2 Ps;t(S) to be a curve connecting points s; t on

the triangulate graph passing through node points xk ; k = 1; : : : ; N with associated lengths, curvatures and torsions
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Figure 22: Left column shows macaque whole brains 90C and 93G with hand drawn fundus beds. The middle column

shows the mean and variance results. Top row (middle column) shows the mean fundus beds computed from three

macaque brains, 90C,93G, and 87A displayed on the mean brain; bottom row shows the fundus beds sampled from the

prior distribution on curvature and torsion of the curve. Right column shows the Arcuate and Central fundus curves

generated with the likelihood and the prior distribution. Data taken from the laboratory of David Van Essen of the

Department of Anatomy and Neurobiology at Washington University.

lk; �k; �k; k = 1; : : : ; N . De�ne the posterior potential of a discrete curve �(s; t) connecting (s; t) as

H(�) = �

X
k

(lk � �
lk)

2 + �

X
k

(�k � ��k)
2 + 


X
k

(�k � ��k)
2 (127)

+
1

�
2

X
k

�
(�max(xk)�K)2 + (�max(xk+1)�K)2

2
+

(�max(xk)� �max(xk+1))2
6

�
kxk+1 � xkk :

Dynamic programming maximizes over the space of curves �(s; t) 2 Ps;t(S).

Corollary 4 Given s and t the start and end point of the curves �(s; t) 2 Ps;t(S), then the algorithm in Theorem 8

with the costs for transition

c
k(i; j) = 1; j 62 Pi (128)

c
k(i; j) =

1

�
2

�
(�max(xi)�K)2 + (�max(xj)�K)2

2
+

(�max(xi)� �max(xj)2
6

�
kxi � xjk (129)

+ �(lk � �
lk)

2 + �(�k � ��k)
2 + 
(�k � ��k)

2
; j 2 Pi ; (130)

produces the maximum aposteriori estimator maximizing Eqn. 127, �̂(s; t)
:

= argmin�(s;t)2Ps;t(S)H(�).

Shown in the right column, panels 3 and 6 of Figure 22 are results using of the prior distribution for generating the

Arcuate and Central sulci, respectively, with �̂
l; �̂�; �̂� ; �; �; 
 estimated from the whole macaque brains 87A, 90C and 93G.

Notice how smooth the curves are.
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9 Symmetry in the Human Brain

The study of symmetry and lack of symmetry in the brain is important biologically. This can be made quantitatively

precise. We have been studying the symmetry of the human brain via standard mathematical representations known

as symmetry groups following the work of Lei Wang on the hippocampus. Most straightforwardly let us examine the

re
ection group D expressing axis 
ipping symmetry around the sagittal plane. This makes quantitative the notion of

left and right sided brain symmetry, and variation away from left and right sided symmetry.

Begin by embedding the human brain in 
 the unit cube, with coordinates

x = (x1; x2; x3);�1=2 � x1 � 1=2;�1=2� x2 � 1=2;�1=2 � x3 � 1=2 :

For symmetry around the sagittal plane, choose the convention that the sagittal plane Psag through the center of the

longitudinal cerebral �ssure is the set of all points

Psag = fx = (x1; x2; x3) 2 
 : x3 = 0g :
The re
ection subgroupD = fI; Rg consists of the identity transformation I , the 3�3 identity matrix, and the re
ection
R around the sagittal plane becomes

D = fI =
0
@ 1 0 0

0 1 0

0 0 1

1
A

; R =

0
@ 1 0 0

0 1 0

0 0 �1

1
Ag : (131)

The re
ection generates the following global map around the sagittal plane:

R : (x1; x2; x3) 7! (x1; x2;�x3) :
Finding automatically the sagital plane around which the 
ip group is de�ned is being accomplished in our group as

follows. We use the rigid motions to characterize lines and planes of symmetry. De�ne the rigid Euclidean transformation

(O; a) : x 7! y = Ox+ a, O an orthogonal matrix. Then the plane of symmetry is the set of points that are invariant to

the above transformation, i.e. it is the plane de�ned by the points that satisfy the equation:

x = Ox + a :

Once the sagital plane is de�ned, then the question of right and left-sidedness, and its quantitative representation

becomes straightforward. Examine the transformation from the left to right side of the brain, taking the left hand side

(LHS) as the template, and the right hand side (RHS) as the target. The transformation is constrained to be of the

form

h : x 7! h(x) = Rx� u(Rx) ; (132)

with R the re
ection 
ip group. If the brain were perfectly symmetric, then u(�) is identically zero. The variation of

u(�) away from zero is a measure of asymmetry. The average size and locality of variation of the u(�) �elds from LHS

to RHS then becomes a quantitative measure of asymmetry within the normal population and across the populations.

Shown in Figure 23 are an example of the symmetries in the human brain between the left and right hippocampus.

The left column shows a section through an MRI of the template hippocampus (top row) and a 3-D rendering of the

template (bottom row). The middle column shows the LHS target that the template has been mapped into. The right

column shows the result of 
ipping via the rigid axis-
ipping group, and then mapping the LHS to the RHS.

10 Abnormal Anatomy

Now examine the generalization to abnormal anatomies. In formalizing pathologies we shall employ the dichotomy

automorphic pathologies vs heteromorphic pathologies following the terminology in [2, 142]. An automorphic pathology

modi�es an anatomical con�guration I 2 I� into another I 0 2 I� via the di�eomorphism h
0 2 H: I 0 = h

0
I , so that we do

not leave the space of anatomies I�. This is not true for the heteromorphic pathologies for which the new con�guration

is generated via a more drastic change of the regular topology, perhaps adding neoplasm or eliminating structures. This

requires us to expand to multiple anatomies, I = [�I�, with the transformations acting H : I� ! I.
Throughout we shall use the terms normal/abnormal in a way that di�ers from the customary one. Abnormal

signi�es something exceptional, an anomaly, but not necessarily indicating improper functioning. As well, throughout

we shall concentrate solely on change in topological structure. There is of course a second type type of automorphic

pathology, ones corresponding to changes in the textures of the normal textbook pictures I 2 I. We shall not explore

this here. Throughout our discussions below we assume a two dimensional background space 

:

= [0; 1]2 in the small

deformation setting.
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Figure 23: Left column shows the template section of MRI (top row) and 3-D surface rendering (bottom row). The

middle and right panels show the template mapped to the RHS (middle column) and the RHS mapped to the LHS

(right column).

10.1 Automorphic Pathologies

Automorphic pathologies, though abnormal, should preserve the topological structures of a normal human body. If the

deformation operator h 2 H is too far from the identity element in the similarity group so that it falls outside of a

con�dence set of the null hypothesis, H0, we can identify this kind of abnormality by estimating the probability density

p(h) and applying the Neyman-Pearson lemma to arrive at an appropriate decision. Examining any standard atlas

on disease, one is impressed with the vast number of mechanisms in the human body that can generate automorphic

pathologies. Take arterial deformation where arteries have a decreased diameter. The decrease in diameter corresponds

to h-values in a range where the density on deformations p(h) is so small that it would occur only rarely for a normal

patient. In the HANDS study [143] this idea of testing h-values far from the identity element in the group was used for

detecting abnormalties such as a malformed thumb.

Examine automorphic shape changes. Say that a planar anatomy is shrinking or expanding. Then the group

of transformation H take the form H : x = (x1; x2) ! h(x) = x � (u1(x); u2(x)). Introduce the dilatation vector

d = (d1; d2) 2 IR
2. Abnormal anatomy H1 is generated via the solution of the random equation LU = W , with

(LH0
;W

H0) associated with normal, and (LH1
;W

H1) associated with disease.

The energy functions on the N �N lattice in the Gaussian prior distribution could take the form

E(u) =

NX
x1=1

NX
x2=1

Q(x1; x2)

where H0 : Q(x1; x2) = (�u1)
2 + (�u2)

2; (x1; x2) (133)

H1 : Q(x1; x2) = (�u1 � d1)2 + (�u2 � d2)2; (x1; x2) ; (134)

and with � standing for the discrete Laplacian operator

�u1(x1; x2) = u1(x1 + 1; x2)� 2u1(x1; x2) + u1(x1 � 1; x2) + u1(x1; x2 + 1)� 2u1(x1; x2) + u1(x1; x2 � 1) ;(135)

�u2(x1; x2) = u2(x1 + 1; x2)� 2u2(x1; x2) + u2(x1 � 1; x2) + u2(x1; x2 + 1)� 2u2(x1; x2) + u2(x1; x2 � 1) :(136)

Assume cyclic or �xed boundary conditions. To synthesize the prior measure under PH0
; PH1

we solve the stochastic

partial di�erence equations

H0 : (�uj)(x1; x2) = wj(x1; x2) ; j = 1; 2 ; (137)

H1 : (�uj)(x1; x2) = wj(x1; x2) + d1 ; j = 1; 2 ; (138)
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where w(�; �) is a noise realization. A slight modi�cation of this would be to allow the vectors d1; d2 to be space dependent,

for example pointing outwards or inwards from a center of the abnormality.

In the left panel of Figure 24 the deformations are shown on an MRI section from a human brain for various choices

of the dilatation vector. The top left panel a) shows the original image with the area of dilatation depicted; the top

right panel b) shows a contracting �eld d1 < 0 and d2 < 0; the bottom left panel c) shows an expanding �eld d1 > 0

and d2 > 0; the bottom right panel d) shows a shearing �eld d1 < 0 and d2 > 0. The right column shows similar results

for the ventricles.

Deformation on MRI image

a

c

b

d

Deformation on Ventricles

a

c

b

d

Figure 24: Figures showing homomorphic deformations. Left �gure: Top left panel a) shows the original image with the

area of dilatation depicted; the top right panel b) shows a contracting �eld d1 < 0 and d2 < 0; the bottom left panel c)

shows an expanding �eld d1 > 0 and d2 > 0; the bottom right panel d) shows a shearing �eld d1 < 0 and d2 > 0. Right

�gure: Shows analogous deformations to the ventricles.

Testing for automorphic abnormality. Under the null (normal) and disease hypotheses let the random defor-

mation have densities H0 : p0(h), H1 : p1(h). Assume the image ID are generated of a particular patient's anatomy,

the goal being to diagnose disease. The likelihood function of the measured imaged data ID expresses the physical

chararcteristics of the sensor(s) used and therefore does not depend upon the choice of prior, thus L(IDjh) is the same
for both hypotheses H0; H1. This implies that the density f0(�) of the observed deformed image ID under the hypotheses

H0; H1 becomes

H0 : f0(I
D) =

Z
H

p0(h)L(I
D
; h)dh ; (139)

H1 : f1(I
D) =

Z
H

p1(h)L(I
D
; h)dh (140)

The question of how to calculate such integrals has been addressed in [2]. The most powerful test comes out directly

from the Neyman-Pearson lemma in terms of the critical region W as

W = fID :
f1(I

D)

f0(ID)
� constantg :

If the sensor is very accurate, which should be interpreted as meaning that the posterior densities f0 / p0(�)L(ID ; �),
f1 / p0(�)L(ID; �) are very peaked, then the group element h 2 H is e�ectively observed with high accuracy, so that

the test can be organized in terms of the group elements directly. This is probably true for high quality MRI's, and

certainly true for CRYOSECTION and post-mortem imagery. Then the most powerful test e�ectively becomes

W = fh : p1(h)
p0(h)

� constantg :
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10.2 Heteromorphic pathologies

Dealing with heteromorphic pathologies is a more di�cult challenge. Clearly new masses due to various tumors introduce

deformation which carry us outside the space I�, requiring the introduction of a larger sample space I = [�I�, with
H : I� ! I. To represent this type of heteromorphic pathology, where new mass pushes out the normal tissue, we shall

use a deformable template such as in [7] for the mass and then condition the h-�eld accordingly.

Introduce a template con�guration of the domain 
path � 
 representing the mass and denote its central point

by xcenter . On this template let the random transformations act. To �x ideas let the translation groups act on the

background spaces 
path � 
, and use a stochastic di�erence equation LU = E to describe the normal displacements

in 
 n
path. The normal tissue around xcenter is displaced by the new mass.

Denote the boundary of the pathology 
path as @
path, and solve the same stochastic di�erence equation as before,

but in the domain outside of the new mass

(LU)(x) =W (x); x 2 
 n
path ;
with the boundary conditions U(x) = xcenter � x; x 2 @
path. In other words, the normal material is pushed out from

xcenter and replaced by the tissue in 
path.

The left panel of Figure 25 shows an expansion or "push out"; the right panel shows a "push in". Another pathology

Heteromorphic Deformation

d

b

c

a e

g

f

h

Figure 25: Figure showing heteromorphic deformations. The left panel shows an expansion or "push out"; the right

panel shows a "push in".

that may be of interest is when the change in tissue is not a "push out" but "cover" , in the sense that the new mass

takes the place of some of the normal ones, invades it without displacing it. This is straightforwardly represented by

solving the stochastic di�erence equation over the whole space 
, and then placing a deformed template at some xcenter
covering the rest in that part of 
.

To represent heteromorphic shape abnormalities assume that the anatomy is enclosed in a bounded rectangular

background space X � IR
3 and use the operator L = �+ c; c < 0, with Dirichlet boundary conditions on @
. Making

c negative ensures non-singularity and existence of a solution to the problem below. For simplicity we assume the three

components of the deformation �eld d(x);x 2 
 to be independent; for the coupled case we should replace L by the

Navier operator used above.

Let a 2 
 be a center for an expanding abnormality that expands into a region A � 
. For example, A could be a ball

with the center at a but more general shapes will be allowed. The normal remainder will be denoted N = 
 nA. With

the usual representation for the observed image ID(x)
:

= Itemp[x � u(x)] so that we are led to the following stochastic

�eld equation for the pathology induced displacement

(Lu)(x) = (�u)(x) + cu(x) = w(x) ; x 2 N ;

with the boundary condition

u(x) = uA(x) = a � x;x 2 @A
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u(x) = 0;x 2 @

and w(�) is a noise �eld. Note that u(�) is not and should not be de�ned in the abnormal region A.

Let G = G(x; y);x; y 2 N be the Green's function for the Laplacian � in N with Dirichlet conditions. In N introduce

a function v(x) taking the values uA(x) on @A and zero on @
. For the new �eld g = u� v we have
Lg = Lu� Lv = w � Lv

and g satis�es Dirichlet boundary conditions. Ansatz:

g(x) =

Z
N

G(x; y)f(y)dy

with some function f to be determined. Then

(Lg)(x) = �

Z
N

G(x; y)f(y)dy + c

Z
N

G(x; y)f(y)dy = f(x) +

Z
A

G(x; y)f(y)dy

But Lg = Lu� Lv = w � Lv so that we get the integral equation

f(x) +

Z
N

G(x; y)f(y)dy = g(x) � (Lv)(x)

and we should solve the Fredholm equation with the Fredholm alternative holding.

Remark 10 For a more complete simulation we must de�ne the texture inside A. Because of the heteromorphic property

this texture is not inherited from the template but must be de�ned separately. Methods such as that used in [7] are then

appropriate.

Remark 11 Random abnormality region. In the above we assumed A to be given in advance; an alternative would

be to let it grow randomly, by introducing a force �eld F (x);x 2 
taking 3-vectors as values and such that is directed

outward from the abnormality center a and solve

(Lu)(x) = w(x) + F (x);x 2 
 :

11 Conclusions

Within this paper we have developed mathematical representations of the variability of human anatomy focussing on

neuroanatomical variation of neocortical volumes, and 1,2-dimensional sulcal and surface submanifolds. The generation

of probabilistic measures of anatomical variation on coordinatized submanifolds is formulated as an empirical procedure

in which populations of brains are mapped to common coordinate systems. Coordinate systems are constructed which

are closest to the population of anatomies in a minimum distance sense, the idealized coordinate systems become the

empirically estimated templates.

High dimensional Gaussian probability measures on vector �eld deformations of the template coordinates and its

submanifolds are de�ned. Covariance estimation is posed as generalized spectrum estimation indexed over the sub-

manifolds, with parameters of the spectral representations estimated directly from the empirically measured maps onto

the anatomical populations. Mathematical methods for estimating brain volumes as well as manifold variations associ-

ated with closed smooth surface representations associated with hippocampal subvolumes, and cortical sulci have been

described.

Several methods are described showing the use of these mathematical representations of variability for characterizing

disease described as classical Bayesian hypothesis testing against base measures. Disease or abnormality refers to either

(1) local and regional alterations in the size and shape of brain structures relative to the base normal measure, i.e. a

large deviation, or (2) the abnormal presence or absence of substructures corresponding to a fundamental change in

topology of the underlying graph structure of the brain.

The mathematical methods applied in this paper may be unfamiliar to many researchs in computational anatomy.

We believe, however, that they the methodology presented herein will form the basis for studying complex anatomical

structures.

12 Acknowledgements

We would like to acknowledge Sarang Joshi and Gary Christensen for the matching algorithm implementations, David

Van Essen of Washington University for all of the macaque data, Drs. John Csernansky, John Haller and Michael Vannier

of Washington University and the University of Iowa for the hippocampus data from their schizophrenia studies, and to

Navin Khaneeja, Lei Wang, and Zhidong Lu.

51



References

[1] U. Grenander. A uni�ed approach to pattern analysis. Adv. Computing., 10:175{216, 1970.

[2] U. Grenander. General Pattern Theory. Oxford Univ. Press, 1994.

[3] W. M. Boothby. An Introduction to Di�erentiable Manifolds and Riemannian Geometry. Academic Press, 1986.

[4] M.I. Miller, G.E. Christensen, Y. Amit, and U. Grenander. Mathematical textbook of deformable neuroanatomies.

Proceedings of the National Academy of Science, 90(24), December 1993.

[5] G. E. Christensen, R. D. Rabbitt, and M.I. Miller. A deformable neuroanatomy textbook based on viscous 
uid

mechanics. In Jerry Prince and Thordur Runolfsson, editors, Proceedings of the Twenty-Seventh Annual Conference

on Information Sciences and Systems, pages 211{216, Baltimore, Maryland, March 24-26 1993. Department of

Electrical Engineering, The Johns Hopkins University.

[6] G. E. Christensen, R. D. Rabbitt, and M.I. Miller. 3D brain mapping using a deformable neuroanatomy. Physics

in Medicine and Biology, 39:609{618, 1994.

[7] U. Grenander and M. I. Miller. Representations of knowledge in complex systems. Journal of the Royal Statistical

Society B, 56(3):549{603, 1994.

[8] M. W. Vannier, M. I. Miller, and U. Grenander. Modeling and data structure for registration to a brain atlas of

multimodality images. In edited by R. W. Thatcher, M. Hallett, T. Ze�ro, E. R. John, and M. Huerta, editors,

Functional Neuroimaging- Technical Foundations, pages 217{221. Academic Press, 1994.

[9] Sarang C. Joshi, Michael I. Miller, Gary E. Christensen, Ayananshu Banerjee, Thomas A. Coogan, and Ulf

Grenander. Hierarchical brain mapping via a generalized dirichlet solution for mapping brain manifolds. In Proc.

of the SPIE's 1995 International Symposium on Optical Science, Engineering, and Instrumentation, volume 2573,

pages 278{289, August, 1995.

[10] Sarang C. Joshi, Jing Wang, Michael I. Miller, David Van Essen, and Ulf Grenander. On the di�erential geometry

of the cortical surface. In Proceedings of SPIE's 1995 Geometric Methods in Applied Imaging, San Diego, CA.,

9-14 July, 1995.

[11] G. E. Christensen, R. D. Rabbitt, M.I. Miller, S.C. Joshi, U. Grenander, and T. A. Coogan. Topological Properties

of Smooth Anatomic Maps. Kluwer Academic Publishers, 1995.

[12] G.E. Christensen, M.I. Miller, M. W. Vannier, and U. Grenander. Individualizing neuroanatomical atlases using

a massively parallel computer. Computer, January 1996.

[13] G. E. Christensen, R. D. Rabbitt, and M. I. Miller. Deformable templates using large deformation kinematics.

IEEE Transactions on Image Processing, 5(10):1435{1447, October 1996.

[14] John W. Haller, Gary E. Christensen, Sarang Joshi, , John W. Newcomer, Michael I. Miller, John C. Csernansky,

and Michael W. Vannier. Hippocampal mr imaging morphometry by means of general pattern matching. Radiology,

199(3):787{791, June 1996.

[15] John W. Haller, Ayananshu Banerjee, Gary E. Christensen, Sarang Joshi, Michael I. Miller, Michael W. Vannier,

and John C. Csernansky. Three-dimensional hippocampal volumetry by high dimensional transformation of a

neuroanatomical atlas. Radiology, 202(2):504{510, February 1997.

[16] S. Joshi. Large Deformation Di�eomorphisms and Gaussian Random Fields for Statistical Characterization of

Brain SubManifolds. PhD Thesis, Department of Electrical Engineering, Sever Institute of Technology, Washington

University, St. Louis,Mo., August 1997.

[17] L. Matejic. Group Cascades for Representing Biological Variability. Ph.D. Dissertation and Brown University,

Providence, RI, 1997.

[18] P. Dupuis, U. Grenander, and M.I. Miller. Variational problems on 
ows of di�eomorphisms for image matching.

Report of the lcds, 1997.

[19] G. E. Christensen, S. C. Joshi, and M. I. Miller. Volumetric transformation of brain anatomy. IEEE Transactions

on Medical Imaging, 16(6), December 1997.

52



[20] S. Joshi, M.I. Miller, and U. Grenander. On the geometry and shape of brain sub-manifolds. International Journal

of Pattern Recognition and Arti�cial Intelligence, 11(8), 1997.

[21] M. Miller, Ayananshu Banerjee, Gary Christensen, Sarang Joshi, Navin Khaneja, U. Grenander, and Larissa

Matejic. Statistical methods in computational anatomy. Statistical Methods in Medical Research, (6):267{299,

1997.

[22] P. Dupuis, U. Grenander, and M.I. Miller. Variational problems on 
ows of di�eomorphisms for image matching.

Quarterly of Applied Mathematics, 1998.

[23] D. C. Van Essen, H. Drury, S. Joshi, and M. I. Miller. Functional and structural mapping of human cerebral

cortex: Solutions are in the surfaces. Proceedings of the National Academy of Science, 95:788{795, February 1998.

[24] M.I. Miller N. Khaneja, U. Grenander. Dynamic programming generation of geodesics and sulci on brain surfaces.

Pattern Analysis and Machine Intelligence.

[25] Muge Bakircioglu, Ulf Grenander, Navin Khaneja, and Michael Miller. Curve matching on brain surfaces using

frenet distances. To appear in Human Brain Mapping, 1998.

[26] C. M. Pechura and J. B. Martin. Mapping the brain and its functions: Integrating enabling technologies in

neuroscience research. Report of the institute of medicine, 1991.

[27] Greitz, Bohm, Holte, and Eriksson. A computerized brain atlas: Construction, anatomical content, and some

applications. Journal of Computer Assisted Tomography, 15(1):26{38, January/February 1991.

[28] R. Bajcsy, R. Lieberson, and M. Reivich. A Computerized System for the Elastic Matching of Deformed RAdio-

graphic Images to Idealized Atlas Images. Journal of Computer Assisted Tomography, 7(4):618{625, 1983.

[29] R. Dann, J. Hoford, S. Kovacic, M. Reivich, and R. Bajcsy. Evaluation of Elastic Matching Systems for Anatomic

(CT, MR) and Functional (PET) Cerebral Images. Journal of Computer Assisted Tomography, 13(4):603{611,

July/August 1989.

[30] K.H. Hohne, M. Bomans, M. Reimer, R. Schubert, U. Tiede, and W. Lierse. A volume-based anatomical atlas.

IEEE Comput. Graphics Appl., pages 72{78, 1992.

[31] J.C. Mazziotta, Arthur W. Toga, Alan Evans, Peter Fox, and Jack Lancaster. Probabilistic atlas of the human

brain: Theory and rationale for its development. Neuroimage, 2:89{101, 1995.

[32] M.E. Shenton, R. Kikinis, F.A. Jolesz, S.D. Pollak, M. LeMay, C.G. Wible, H. Hokama, J. Martin, D. Metcalf,

M. Coleman, and R. W. McCarley. Abnormalities of the left temporal lobe and thought disorder in schizophrenia.

N. Engl. J. Med., 327:604{612, 1992.

[33] W. Jansen, J.P. Baak, A.W. Smeulder, and A.M. van Ginneken. A computer based handbook and atlas of

pathology. Pathol. Res. Pract., 185(5):652{656, 1989.

[34] C. Bohm, T. Greitz, B. Berggren, and L. Ollson. Adjustable computerized stereotaxic brain atlas for transmission

and emission tomography. AJNR, 4:731{733, 1988.

[35] Extraction of morphometric information from dual echo magnetic resonance brain images, volume 1360, 1991.

[36] A.C. Evans, C. Beil, S. Marret, C.J. Thompson, and A. Hakim. Anatomical-functional correlation using an

adjustable mri-based region of interest atlas with positron emission tomography. Journal of Cerebral Blood Flow

and Metabolism, 8:513{530, 1988.

[37] A.C. Evans, W. Dai, L. Collins, P. Neelin, and S. Marret. Warping of a computerized 3-d atlas to match brain

image volumes for quantitative neuroanatomical and functional analysis. Image Processing, 1445:236{246, 1991.

[38] D. C. Van Essen and H. Drury. Structural and functional analyses of human cerebral cortex using a surface-based

atlas. J. Neuroscience, in press.

[39] F.L. Bookstein. The Measurement of Biological Shape and Shape Change, volume 24. Springer-Verlag: Lecture

Notes in Biomathematics, New York, 1978.

[40] F.L. Bookstein and W.D.K. Green. Edge information at landmarks in medical images. In Richard A. Robb, editor,

Visualization in Biomedical Computing 1992, pages 242{258. SPIE 1808, 1992.

53



[41] F.L. Bookstein. Biometrics, biomathematics and the morphometric synthesis. Bulletin of Mathematical Biology,

58(2):313{365, 1996.

[42] A.W. Toga, P.K. Banerjee, and B. A. Payne. Brain warping and averaging. J. Cereb. Blood Flow Metab., 11:S560,

1991.

[43] W.D.K. Green and F.L. Bookstein. Edge information at landmarks in medical images. In Richard A. Robb, editor,

Visualization in Biomedical Computing, pages 242{258. SPIE, 1996.

[44] D. Terzopoulos. Multiresolution computation of visible-surface representations. Ph.D Thesis, Massachusetts Insti-

tute of Technology, Boston, MA., 1984.

[45] M. Kass, A. Witkin, and D. Terzopolous. Snakes: Active contour models. International Journal of Computer

Vision, 1(4):321{331, 1988.

[46] D. Terzopoulos and K. Waters. Physically-based facial modelling, analysis, and animation. The Journal of

Visualization and Computer Animation, 1:73{80, 1990.

[47] I. Carlbom, D. Terzopoulos, and K. Harris. Computer-assisted registration, segmentation, and 3d reconstruction

from images of neuronal tissue sections. IEEE Transactions on Medical Imaging, 13(2):351{362, june 1994.

[48] D. Terzopoulos and D. Metaxas. Dynamic 3d models with local and global deformations: Deformable su-

perquadrics. IEEE Trans. Patt. Anal. Mach. Intell., 13:703{714, 1991.

[49] A. Pentland and S. Sclaro�. Closed-form solutions for physically based shape modeling and recognition. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 13(7):715{729, July 1991.

[50] L.H. Staib and J.S. Duncan. Boundary �nding with parametrically deformable models. IEEE Transactions on

Pattern Analysis and Machine Intelligence, PAMI-14(11):1061{1075, November 1992.

[51] T.F. Cootes, C.J. Taylor, D.H. Cooper, and J. Graham. Active shape models|their training and application.

Computer Vision and Image Understanding, 61(1):38{59, 1995.

[52] M.I. Miller, S. Joshi, D. R. Ma�tt, J. G. McNally, and U. Grenander. Mitochondria, membranes and amoebae:

1,2 and 3 dimensional shape models. In Kanti Mardia, editor, Statistics and Imaging, volume II. Carfax Publishing

C., Abingdon, Oxfordshire - England, 1994.

[53] K.J. Friston, C.D. Frith, P.F. Liddle, and R.S.J. Frackowiak. Plastic transformation of pet images. Journal of

Computer Assisted Tomography, 15:634{639, 1991.

[54] R.D. Rabbitt, J.A. Weiss, G.E. Christensen, and M.I. Miller. Mapping of hyperelastic deformable templates

using the �nite element method. Presented at the International Symposium on Optical Science, Engineering and

Instrumentation, July 1995.

[55] John W. Haller, Michael I. Miller Gary E. Christensen, Sarang Joshi, Mokhtar Gado, John Csernansky, and

Michael W. Vannier. A comparison of auatomated and manual segmentation of hippocampus mr images. In

Proceedings of SPIE's Medical Imaging 1995, volume 2434, pages 206{215, San Diego, California, 27February - 2

March,1995.

[56] John W. Haller, Gary E. Christensen, Sarang Joshi, Michael I. Miller, and Michael W. Vannier. Digital atlas-based

segmentation of the hippocampus. In C.C. Ja�e H.U. Lemke, K. Inamura and M.W. Vannier, editors, Computer

Assisted Radiology:Proceedings of the International Symposium on Computer and Communications Systems for

Image Guided Diagnosis and Therapy, volume 2434, pages 152{157, CAR'95 Berlin, June 21-24, 1995.

[57] D.L. Collins, Peter Neelin, Terrence M. Peters, and A.C. Evans. Automatic 3d intersubject registration of mr

volumetric data in standardized talairach space. Journal of Computer Assisted Tomography, pages 192{205,

March/April 1994.

[58] K.J. Friston, J. Ashburner, C.D. Frith, J.-B. Poline, J. D. Heather, Liddle, and R.S.J. Frackowiak. Spatial

registration and normalization of images. Human Brain Mapping, 2:165{189, 1995.

[59] D.L. Collins, C.J. Holmes, Terrence M. Peters, and A.C. Evans. Automatic 3-d model-based neuroanatomical

segmentation. Human Brain Mapping, 3:190{208, 1995.

54



[60] C. Davatzikos, Marc Vaillant, Susan m. Resnick, Jerry L. Prince, Stanley Letovsky, and R. Nick Bryan. A com-

puterized approach for morphological analysis of the corpus callosum. Journal of Computer Assisted Tomography,

20(1):88{97, 1996.

[61] C. Davatzikos. Spatial normalization of 3-d brain images using deformable models. Journal of Computer Assisted

Tomography, 20(4):656,665, July/August 1996.

[62] C. Davatzikos. Spatial transformation and registration of brain images using elastically deformable models. Comp.

Vision and Image Understanding, 66(2):207{222, May 1997.

[63] A. Dale and M. Sereno. Improved localization of cortical activity by combining eeg and meg with mri cortical

surfaec reconstruction: A linear approach. J. Cognit. Neuroscience, 5:2:162{176, 1993.

[64] Rademacher J, Caviness Jr VS, Steinmetz H, and Galaburda AM. Topographical variation of the human primary

cortices:implications for neuroimaging,brain mapping and neurobiology. Cerebral Cortex, 2:313{329, 1993.

[65] H. A. Drury, D. C. Van Essen, C. H. Anderson, C. H . Lee, T. A. Coogan, and J. W. Lewis. Computerized

mappings of the cerebral cortex. a multiresolu tion 
attening method and a surface-based coordinate system. J.

Cogn. Neurosci., 8:1{28, 1996.

[66] D.C. Van Essen. Pulling strings to build a better brain: A tension-based theory of morphogenesis and compact

wiring in the central nervous sytem. Nature, 385:313{318, 1997.

[67] J.P. Thirion and A. Gourdon. 3d marching line algorithm and its applications to crest lines extraction. Research

Report No. 1672, INRIA, Epidaure, 1992.

[68] J.P. Thirion and A. Gourdon. The 3d marching lines algorithm. CVGIP: Graphical Models and Image Processing,

pages 503{509, 1996.

[69] J.T. Kent, K.V. Mardia, and J.M. West. Ridge curves and shape analysis. InMonograph, Department of Statistics,

University of Leeds., Leeds LS2 9JT, UK, May, 1996.

[70] N. Khaneja. Statistics and Geometry of Cortical Features. M.S. Thesis, Department of Electrical Engineering,

Sever Institute of Technology, Washington University, St. Louis, MO, December 1996.

[71] L. Younes. Computable elastic distances between shapes. To appear in SIAM J. Applied Math., 1998.

[72] M. Piccioni, S. Scarlatti, and A. Trouv�e. A variational problem arising from speech recognition. SIAM Jour. of

Applied Maths, 1998.

[73] A. Trouv�e. Di�eomorphisms groups and pattern matching in image analysis. Intern. Jour. of Computer Vision.

[74] A. Trouv�e. Action de groupe de dimension in�nie et reconnaissance de formes. C. R. Acad. Sci. Paris, S�erie I,

((321)):1031{1034, 1995.

[75] A. Trouv�e. An in�nite dimensional group approach for physics based models in patterns recognition.

[76] A. Trouv�e. habilitation �a diriger les recherches. University Orsay, January 1996.

[77] S.K. Kyriacou, C. Davatzikos, S.J. Zinreich, and R.N. Bryan. Modeling brain pathology and tissue deformation

using a �nite element based nonlinear elastic models. IEEE Trans. on Med. Imag., 1997. submitted.

[78] D.J. Felleman and D.C. Van Essen. Distributed hierarchical processing in the primate cerebral cortex. Cerebral

Cortex, 1(1):1{47, 1991.

[79] L.D. Gri�n. The Intrinsic Geometry of the Cerebral Cortex. Journal of Theoretical Biology, 166:261{273, 1994.

[80] L. A. Shepp and Y. Vardi. Maximum-likelihood reconstruction for emission tomography. IEEE Trans. on Medical

Imaging, MI-1:113{121, 1982.

[81] L.A. Shepp, Y. Vardi, J. B. Ra, S.K. Hilal, and Z.H. Cho. Maximum-likelihood with real data. IEEE Transaction

on Nuclear Science, NS-31:910{913, 1984.

[82] E. Veklerov and J. Llacer. Stopping rule for the mle algorithm based on statistical hypothesis testing. IEEE Trans.

on Medical Imaging, MI-6, No. 4:313{319, 1987.

55



[83] J. Llacer and E. Veklerov. Feasible images and practical stopping rules for iterative algorithms in emission tomog-

raphy. IEEE Trans. on Medical Imaging, MI-8:186{193, 1989.

[84] M. I. Miller, D. L. Snyder, and T. R. Miller. Maximum likelihood reconstruction for single photon emission

computed tomography. IEEE Trans. on Nuclear Science, NS-32,No.1:769{778, 1985.

[85] C.E. Floyd, R.J. Jaszczak, and R.E. Coleman. Inverse monte-carlo: a uni�ed reconstruction algorithm for SPECT.

IEEE Transactions on Nuclear Science, NS-32:779{785, 1985.

[86] G. T. Herman and D. Odhner. Performance evaluation of an iterative image reconstruction algorithm for positron

emission tomography. IEEE Transactions on Medical Imaging, MI-10:336{346, September 1991.

[87] Je�rey A. Fessler. Hidden-data spaces for maximum-likelihood PET reconstruction. In Conference Record of

the 1992 IEEE Nuclear Science Symposium and Medical Imaging Conference, pages 898{900, Orlando, Florida,

October 25-31, 1992. IEEE Service Center.

[88] J.-S. Liow and S. C. Strother. Noise and signal decoupling in maximum likelihood reconstructions and metz �lters

for pet images. Conference Record of the 1992 IEEE Nuclear Science Symposium and Medical Imaging Conference,

2:901{903, 1992.

[89] D. G. Politte and D. L. Snyder. Corrections for accidental coincidences and attenuation in maximum-likelihood

image reconstruction for positron-emission tomography. IEEE Transactions on Medical Imaging, 10(1):82{89,

March 1991.

[90] U. Grenander. Abstract Inference. John Wiley and Sons, New York, 1981.

[91] D.L. Snyder and M.I. Miller. The use of sieves to stabilize images produced with the EM algorithms for emission

tomography. IEEE Trans. on Nuclear Science, NS-32:3864{3872, 1985.

[92] S. Geman and D.E. McClure. Bayesian image analysis: An application to single photon emission tomography.

Proceedings of the American Statistical Association, pages 12{18, 1985.

[93] D.L. Snyder, M.I. Miller, Jr. L.J. Thomas, and D.G. Politte. Noise and edge artifacts in maximum-likelihood

reconstruction for emission tomography. IEEE Transactions on Medical Imaging, MI-6, No.3:228{237, 1987.

[94] M.I. Miller and B. Roysam. Bayesian image reconstruction for emission tomography: Implementation of the

EM algorithm and Good's roughness prior on massively parallel processors. Proc. of the Natl. Acad. of Sci.,

88:3223{3227, April 1991.

[95] E.S. Chornoboy, C.J. Chen, M.I. Miller, T.R. Miller, and D.L. Snyder. An evaluation of maximum likelihood

reconstruction for SPECT. IEEE Trans. on Medical Imaging, 9(1):99{110, 1990.

[96] T. Hebert and R. Leahy. A generalized EM algorithm for 3-d Bayesian reconstruction from poisson data using

Gibbs priors. IEEE Trans. on Medical Imaging, MI-8, No. 2:194{202, June 1989.

[97] P. J. Green. On use of the EM algorithm for penalized likelihood estimation. J. Royal Statistical Society, B, 52,

No. 3:443{452, 1990.

[98] K. Lange. Convergence of EM image reconstruction algorithms with Gibbs smoothing. IEEE Trans. on Medical

Imaging, MI-9, No. 4:439{446, December 1990.

[99] A.W. McCarthy and M.I. Miller. Maximum likelihood SPECT in clinical computation times using mesh-connected

parallel computers. IEEE Transactions on Medical Imaging, 10, No.3:426{436, September 1991.

[100] G.T. Herman, A.R. De Pierro, and N. Gai. On methods for maximum a posteriori image reconstruction with a

normal prior. Journal of Visual Communication and Image Representation, 3, No.4:316{324, December 1992.

[101] C.S. Butler and M.I. Miller. Maximum a posteriori estimation for SPECT using regularization techniques on

massively-parallel computers. IEEE Transactions on Medical Imaging, 12(1):84{89, March 1993.

[102] Marcus E. Raichle. Activation of extrastriate and frontal cortical areas by visual words and word-like stimuli.

Science, 249:1041{1044, August 1990.

[103] P.T. Fox and M.A. Mintun. Noninvasive functional brain mapping by change-distribution analysis of averaged pet

images of water tissue activity. Clinical Sciences, 30, no. 2:141{149, February 1989.

56



[104] K.J. Friston, P. Jezzard, and R. Turner. Analysis of functional mri time-series. Human Brain Mapping, 2:69{78,

1994.

[105] C.A. Pelizzari, G.T.Y. Chen, D.R. Spelbring, R.R. Weichselbaum, and C.T. Chen. Accurate three-dimensional

registration of ct, pet, and/or mr images of the brain. Journal of Computer Assisted Tomography, 13(1):20{26,

1989.

[106] V. E. Johnson, W. H. Wong, X. Hu, and C.-T. Chen. Image restoration using Gibbs priors: Boundary modeling,

treatment of blurring, and selection of hyperparameter. IEEE Trans. on Pattern Analysis and Machine Intelligence,

PAMI-13, No. 5:413{424, May 1991.

[107] Y. Amit and K. M. Manbeck. Deformable template models for emission tomography. Repts. in Pattern Analysis,

155, 1991.

[108] D.G. Politte and D.L. Snyder. The use of constraints to eliminate artifacts in maximum-likelihood image estima-

tion for emission tomography. IEEE Transactions on Nuclear Science, 35,no.1:608{610, February 1988.

[109] J.G. Csernansky, G.M. Murphy, and W.O. Faustman. Lymbic/mesolimbic connections and the pathogenesis of

schizophrenia. Journal of Biological Psychology, 30:383{400, 1991.

[110] G.E. Christensen, A.A. Kane, J.L. Marsh, and M.W. Vannier. A 3d deformable infant ct atlas. In Computer

Assisted Radiology, in press, Paris, June 1996.

[111] G.E. Christensen, A.A. Kane, J.L. Marsh, and M.W. Vannier. Synthesis of an individualized cranial atlas with

dysmorhpic shape. IEEE Proceedings of Mathematical Methods in Biomedical Image Analysis, in press, June

1996.

[112] D.E. Goodkin, J.S. Ross, M.S. Vanderbrug, J. Konecsni, and R.A. Rudick. Magnetic resonance imaging lesion

enlargement in multiple sclerosis. disease-related activity, chance occurance, or measurement artifact? Arch

Neurol, 49:261{263, 1992.

[113] G.W. Roberts. Schizophrenia: The cellular biology of a functional psychosis. Trends Neurosci, 13:207{211, 1990.

[114] G. Bartzokis, J. Mintz, P. Marx, D. Osborn, D. Gutkind, F. Chiang, CK Phelan, and SR Marder. Reliability

of in vivo volume measures of hippocampus and other brain structures using mri. Magnetic Resonance Imaging,

11:993{1006, 1993.

[115] A.J. Bartley, D. Jones, and D.R. Weinberger. The heritability of gyral patterns in monozygotic and dizygotic

twins. Neuropsychopharmacol, 10:138S, 1994.

[116] R. Bajcsy and S. Kovacic. Multiresolution Elastic Matching. Computer Vision, Graphics, and Image Processing,

46:1{21, 1989.

[117] Y. Amit, U. Grenander, and M. Piccioni. Structural image restoration through deformable templates. J. American

Statistical Association, 86(414):376{387, June 1991.

[118] S. Timoshenko. Theory of Elasticity. McGraw-Hill, 1934.

[119] L.A. Segel. Mathematics Applied to Continuum Mechanics. Dover Publications, New York, 1987.

[120] G. Christensen. Deformable Shape Models for Anatomy. Ph.D. Dissertation, Department of Electrical Engineer-

ing, Sever Institute of Technology, Washington University, St. Louis, MO, Aug 1994.

[121] L. Younes. Discussion of mathematics for object recognition shape, invariance and deformations. In Workshop

on Mathematics for Object Recognition Shape, Invariance and Deformations, November 1997.

[122] M. Claudio and S. Roberto. Using marching cubes on small machines. Graphical Models and Image Processing,

56:182{3, 1994.

[123] B. Hamann. Curvature approximation for triangulated surfaces. In Computing, pages 139{153. Springer-Verlag,

1993.

[124] J.T. Kent and K. V. Mardia. The link between kriging and thin-plate splines. In F. P. Kelly, editor, Probability,

Statistics and Optimisation. John Wiley and Sons, 1994.

57



[125] John C. Csernansky, Sarang Joshi, Lei Wang, Mokhtar Gado, J. Philip Miller, Ulf Grenander, and Michael I.

Miller. Hippocampal morphometry in schizophrenia by high dimensional brain mapping. September 1997.

[126] U. Grenander and G. Szego. Toeplitz Forms and Their Applications. University of California Press, Berkeley,

CA., 1958.

[127] Hui-Hsiung Kuo. Gaussian Measures in Banach Spaces, volume Lecture Notes in Mathematics - 463. Springer-

Verlag, 1975.

[128] R. Szeliski. Bayesian Modeling of Uncertainy in Low-Level Vision. Kluwer Academic Publisher, Boston, 1989.

[129] Frithiof I. Niordson. Shell Throry, volume 29 of Applied Mathematics and Mechanics. North-Holland, Amsterdam

New York Oxford, 1985.

[130] ADINA Theory and Modeling Guide. ADINA R & D, Inc., Watertown MA, 1992.

[131] M. Reed and B. Simon. Fourier Analysis, Self-Adjointness. Academic Press, 1980.

[132] Y. Amit and M. Piccioni. A nonhomogenous markov process for the estimation of gaussian random �elds with

non-linear observations. The Annals of Probability, 19:1664{1678, 1991.

[133] D.C. Van Essen and J.H.R. Maunsell. Two-dimensional maps of the cerebral cortex. J. Comp. Neurology,

191:255{281, 1980.

[134] Wally Welker. Why does cerebral cortex �ssure and fold. Cerebral Cortex, 83:3{136, 1990.

[135] P.M. Thompson, C. Schwartz, R.T. Lin, A.A. Khan, and A.W. Toga. Three-dimensional statistical analysis of

sulcal variability in the human brain. Journal of Neuroscience, 16(13):4261{4274, 1996.

[136] I.R. Porteous. Geometric Di�erentiation. Cambridge University Press, Cambridge, 1994.

[137] D.B. Cooper, H. Elliott, F. Cohen, L. Reiss, and P. Symosek. Stochastic boundary estimation and object recogni-

tion. In A. Rosenfeld, editor, Image Modeling, pages 63{94. Academic Press, New York, 1981.

[138] J. L. Elion, S. A. Geman, and K.M. Manbeck. Computer recognition of coronary arteries. Journal of the American

College of Cardiology, 17,No.2, February 1991.

[139] M. Joshi. Connected Brain Segmentation and Cortical Surface Generation. Master's Thesis, Department of

Electrical Engineering, Sever Institute of Technology, Washington University, St. Louis,Mo., August 1998.

[140] N. Khaneja. Cortical Surface and Sulcal Mapping in Anatomy. Masters Thesis, Department of Electrical Engi-

neering, Sever Institute of Technology, Washington University, St. Louis,Mo., September 1996.

[141] Barrett O'Neill. Elementary Di�erential Geometry. Academic Press, Inc, San Diego, 1966.

[142] U. Grenander and Z. Lu. Pattern theoretic representations of anatomical pathologies. In Technical Report.

Division of Applied Mathematics, 1994.

[143] U. Grenander, Y. Chow, and D. Keenan. HANDS: A Pattern Theoretic Study of Biological Shapes. Springer-

Verlag, New York, 1990.

58


