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TABLE 1L
EXPERIMENTAL RESULTS OF CALIBRATING THE CAMERA POSITION PARAMETERS

Measured Position Parameters

Computed Position Parameters

Average Error Rate (%)

1 (94.5,—-56.0,16.5) (89.83,—53.49,17.02) 4.2
2 (198.0, —160.0, 15.7) (198.23, -158.74,'17.16) 34
3 (297.5,-258.0,15.5) (295.29, —259.35,15.72) 0.9
4 (92.0,—51.0,30.0) (91.11, —52.37,30.54) 1.8
5 (196.5, —150.0, 30.0) (195.26, —152.42,30.63) 1.4
6 (298.5,—-250.0,30.0) (298.90, —250.99, 30.96) 1.2
7 (99.0, —43.0,41.0) (100.72, —42.34,42.24) 2.0
8 (204.0, —143.0,41.5) (208.72, —144.72,43.39) 2.7
9 (303.0, —245.0,41.5) (307.60, —246.73,42.37) 1.4
TABLE 1II
SIMULATION RESULTS
Noise Pan Tilt Swing Focal Length Distance Distance
Deviation Error Error Error Error Error Error
(pixel) (degree) (degree) (degree) (pixel) (cm) Rate (%)
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2.50 297 0.72 2.35 26.25 8.41 7.91
3.00 3.37 0.89 271 32.86 9.89 9.30
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4.00 3.54 1.14 321 44,30 11.58 10.89
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Least-Squares Estimation of Transformation
Parameters Between Two Point Patterns

Shinji Umeyama

Abstract— In many ions of comp vision, the following
problem is encountered. Two point patterns (sets of points) {z;}
and {y;}; ¢ =1.2,-..,n are given in m-dimensional space, and we
want to find the similarity transformation parameters (rotation,
translation, and scaling) that give the least mean squared error between
these point patterns. Recently Arun ef al. and Horn et al. have presented a
solution of this problem. Their solution, however, sometimes fails to give
a correct rotation matrix and gives a reflection instead when the data is
severely corrupted. The theorem given in this correspondence is a strict
solution of the problem, and it always gives the correct transformation
parameters even when the data is corrupted.

PP

Index Terms— Absolute orientation problem, computer vision, least-
squares, motion estimation, singular value decomposition.

I. INTRODUCTION

In computer vision applications, we sometimes encounter the
following mathematical problem. We are given two point patterns
(sets of points) {z;} and {y;}; i = 1,2,---,n in m-dimensional
space, and we want to find the similarity transformation parameters
(R: rotation, ¢: translation, and c: scaling) giving the minimum value
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of the mean squared error ¢*(R, t, c) of these two point patterns.
9 1 ¢ 2
,C) = — - i+t 1
S(R.t,c) = — Z lly; = (cRai + t)] M

The dimensionality m is usually 2 or 3.

This problem is sometimes called the absolute orientation problem
[1], and an iterative algorithms for finding the solution [2] and a
noniterative algorithm based on quaternions [3] are proposed for a
3-D problem. A good reference can be found in [1]. Recently, Arun
et al. [4] and Horn et al. [1] have presented a solution of this problem,
which is based on the singular value decomposition of a covariance
matrix of the data. Their solution, however, sometimes fails to give a
correct rotation matrix and gives a reflection instead (det (R) = —1)
when the data is severely corrupted.

The theorem given in this correspondence is a strict solution of
the problem, and it is derived by refining Arun’s result. The theorem
always gives the correct transformation parameters even when the
data is corrupted.

II. LEAST-SQUARES ESTIMATION OF TRANSFORMATION PARAMETERS

In this section, we show a theorem which gives the least-squares
estimation of similarity transformation parameters between two point
patterns. Before showing the theorem, we prove a lemma, which gives
the least-squares estimation of rotation parameters. This lemma is the
main result of this correspondence.

Lemma: Let A and B be m X n matrices, and R an m X m
rotation matrix, and U DV T a singular value decomposition of AB*
@©UT =vVT = I, D = diag(di),dy > do > -+ > dp > 0).
Then the minimum value of ||A — RB||? with respect to R is

|4 - RB|* = |A|I* + |B||* — 2tx(DS) @

min
R
where

_[1I if det(4B7) >0 3
~ | diag(1,1,---,1,—1)  if det(4B”) < 0.
When rank(ABT) > m — 1, the optimum rotation matrix R which
achieves the above minimum value is uniquely determined.

R=USVT )

where S in (4) must be chosen as

if det(U) det(V')

if det(U)det(V) = -1

(1
§= {diag(l,l,---,l,—l)

when det (4BT) = 0 (rank(ABT) = m — 1).
Proof of Lemma: Define an objective function F' as

F=|4-RB|+u(L(R"R- 1)) +g{det(R)—1}  (6)

where g is a Lagrange multiplier and L is a symmetric matrix of
Lagrange multipliers. The second and third term of F' represent the
conditions for R to be an orthogonal and proper rotation matrix
respectively. Partial differentiations of F with respect to R, ¢, and
c lead to the following system of equations [5].

3—2 = -24B" + 2RBB” + 2RL+gR =0 @)
OF _ _p 3
SL=RR-I=0 ®)

o9F _
dg

where we used
% det(R) = adj(RT) = det(RT) (IZT)7

since R is a rotation matrix (adj(R”) is an adjoint matrix of R”).
From (7),

det(R)—1=0 ©)

"R (0

1
RL' = ABT, where L' = BBT + L+ ol (D

By transposing the both sides of (11), we obtain the following
equation (note that L' is symmetric).
L'RT = BAT (12)

If we multiply each side of (11) with each side of (12), respectively,
(13) is obtained since R R = I.

L? = BATABT = vDW" (13)
Obviously L' and L'? are commutative (L' L'> = L'* L"), hence both

can be reduced to diagonal forms by the same orthogonal matrix [6].
Thus we can write

L'=vDsvT, (14)
where S = diag(s:), si = 1, or —1.
Now, from (14),
det(L) = det (VDSVT)
= det(V) det(D) det(S)det(VT)
= det(D) det(S). (15)
On the other hand, from (11)
det(L') = det(R" AB")
= det(R") det(ABT)
= det(ABT). (16)
Thus,
det(D) det(S) = dct(ABT). a7

Since singular values are nonnegative, det(D) = didy---dn > 0.
Hence det(S) must be equal to 1 when det(ABT) > 0, and —1
when det(AB”) < 0.

Next, extremum values of ||A — RB||? is derived as follows: from
(11) we have

14— RB| = ||AI° + || BI* - 2tr(ABTRT)
= || A2 + 1B - 2tr(RTABT)
= |A|I” + 11BII* — 2tx(L').

Substituting (14) into (18), we have

(18)

A - RB| = || A|I* + | B|® - Ztr(VDSVT)
= [lAlI° + || BI]® - 2tx(DS)
= | AI” + IIBII” = 2(dis1 + dasz + - - + dmsm).

(19)
Thus, the minimum value of ||A — RB||* is obviously achieved when
s1=83=-"8mn =1 ifdet(ABT) >0,and sy =s2 =+ 8m_1 =

1, 8, = —1 if det (ABT) < 0. This concludes the first half of the
lemma.

Next, we determine a rotation matrix R achieving the above
minimum value. When rank(ABT) = m, L' is nonsingular, thus
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it has its inverse '™ = (VDSVT)™' = vs§IDTWT =
VDT'SVT (note that S™! = S, SD~! = D~'S). Therefore, from
(11) we have

R=AB"L''=vDvTvD'svl =rUsvT. (o)
Finally, when rank(AB7T) = m — 1, from (11), (14)
RVDSVT =uDvT. 21
Multiplying V' by both sides of (21) from the right and using
DS = D (since dy =0 and sy = 53 = -+ 8y = 1),
RVD=UD (22)
is obtained. If we define an orthogonal matrix @ as follows:
Q=UTRV (23)
we have
QD =D. (24)

Let the column vectors of Q be q,, q,, - - -
The following equations are obtained by comparing both sides of
(24).

d:q; = d;e; 1<i<m=-1 (25)
Hence,
q, = e; 1<i<m-—-1 (26)
where e; is a unit vector which has 1 as an ith element.
i
e = (0,0,--+,1,---.0)7 @7

The last column vector q,,, of Q) is orthogonal to all other vectors g,
(1 <i<m —1)since @ is an orthogonal matrix. Thus we have

q, =€emn OI g, = —én. (28)
On the other hand,
det(Q) = det(UT) det(R) det(V)
= det(U') det(V). (29)

Thus, det(Q) = 1 if det(U)det(V) = 1 and det(Q) = —1 if

det(U) det(V) = —1. Therefore we have
R=UQ@V"
=Usv’ (30)
where
s=11 if det(U)det(V)=1 31)
~ ) diag(1,1,---,1,-1) if det(U)det(V) = —1.
Q.ED.
We can derive the following theorem using this lemma.
Theorem: Let X = {x1, T2, -, 2z} and Y = {y,,y5, ", ¥, }

be corresponding point patterns in m-dimensional space. The mini-
mum value =* of the mean squared error

2 1 ¢ 2
(R, t,c) = — — (cRx; +t

e (Rt,c) = — ?:1 ly; — (cRa: + t)] 32
of these two point patterns with respect to the similarity transforma-

tion parameters (R: rotation, ¢: translation, and c: scaling) is given
as follows:

tr(DS)?

o}

2 2
& =0y

(33)

g (@ = [(11~q2-"'~QmD-

where
" = %Zz (34)
= %z:y (35)
= Sl -l (6)
o= iz o, - 37
Bey = + Z (v —n,) (@i —n,)" ¢38)

n
=1

and let a singular value decomposition of ¥, be UDVT (D =
diag(d;), dy > d2 > -+ > dm > 0), and

if det(T.,) >0

if det(s,,)<0. ©9

T
S= {diag(l.l,---,l,—l)

X,y is a covariance matrix of X and Y, g, and g, are mean vectors
of X and Y, and o2 and 05 are variances around the mean vectors
of X and Y, respectively.

When rank (£.,) > m — 1, the optimum transformation parame-
ters are determined uniquely as follows:

R=USVT (40)
t=m, - cRu, (1)
1
c= Etr(DS) (42)
where S in (40) must be chosen as
_JI if det(U)det(V) =1
S= {diag(l, Lo 1,-1) if det(T)det(V)= -1 @)

when (rank(¥.,,) = m — 1).

Proof: We represent the point sets X, ¥, by m x n matrices
X = [z, @2, zn], Y = [y1, 95 ", Y,], respectively. Then,
¢*(R,t.c) in (32) is reformulated as follows:

A(Rt.c) = %H) — ¢RX - thTH2 (44)

where
h=(1,1,---,1)7. (45)
Here, we introduce an n x n normalization matrix K = I —

(1/n)hh” (K* = KT = K). Using this matrix, the characteristics
in (36)—(38) are written as follows:

ol = %HXKH? (46)
|-
ol = g||y1\||2 47)
Loy = LyrxT. (48)
n

Moreover, if we use the following equations,
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X = XK + L xhn" (49)
n

Y =YK + Lyhat (50)
n

e*(R,t,c) is further reformulated as follows:

2
e’ (R, t.c) = % |YK + LyhnT — cRXK - SRXRAT - th”
n n
1 - R 1 C . T 2
= YK - cRXK +(—=Yh—- SRXh—t)h
n n n
1 - - 1y T 2
= ~||YK - ¢cRXK —t'h H
n
_ i I A o2 1T 2
= n{||} K - cRXK]|| +ch H
- 2tr(I\" (YT - cXTBT)t'hT>} 1)
where
¢ =—1vht SRXA 4t (52)
n n

Since we can show the following equations

tr(lx" (YT - cXTRT)t'hT) = tr (hT (1 L hhT)

n

x (YT - cXTRT)t')

- (-

x (YT - cXTRT)t')

=0 (53)
Jew' | =l s

we have
¢’(R,t,c) = %HYI\' —cRXEK|* + ¢ (55)

From this equation, ¢' must be equal to O in order to minimize
e*(R,t,c), that is,

1., c .
t= ;}'h— ;R.Xh:;zy—cﬂuf. (56)
Next, when U DvTlisa singular value decomposition of X, =
(1/n)Y KX, a singular value decomposition of ¥ K'(cX K) =
YKEETXT = ¢cYKXT is cnUDV?™. Thus, the minimum value
£2(c) of (1/n)||Y K — cRX K||* with respect to R is given from the
lemma as follows:

e(c) = %{HYKH? + X K| - 2tx(cnDS)}
=02 + ol — 2etr(DS) (57
where
_JI if det(¥.y) >0
5= {diag(l,l.---,l.—l) if det(T..) <0, ©O8)
Also from the above lemma, if rank(Xqy) > m — 1,
R=USV" (59)
where S must be chosen as
_JI if det(U)det(V) =1
§= {diag(l,lq---,l, “1)if det(C)det(v) = —1 €0

when rank(X.y) = m — L.

y y
c=(02) C=(02
b=(1,0)
a=(0,0) x B=(-1,0) [A=(0,0) X
Point Pattern X Point Pattemn Y

Fig. 1. Two point patterns X and Y consisting of three points in
two-dimensional space.

y
[ aC
b a
B A x

Fig. 2. The matching result without the proper condition of R.

Finally, since £%(c) is a quadratic form of ¢, the minimum value
of £%(c) is obviously achieved when

tr(DS)

=5 (61)

and the minimum value £° is

tr(DS)” tr(DS)
=0l + {—03—)} o? - 2{-—0_2— tr(DS)
, tr(DS)’

=0yT T (62)
This concludes the theorem. Q.E.D.

I1I. NUMERICAL EXAMPLE

Now we show a very simple numerical example of the absolute ori-
entation problem, where Arun and Horn’s method gives a reflection,
while the proposed method successfully gives a rotation.

Fig. 1 shows two point patterns X and Y consisting of three
points ((a, b, ¢) in X, and (4, B.C) in Y) in two-dimensional space,
respectively. Here we assume that a point a in X is matched with a
point A in Y, b to B, and c to C. Then Arun and Horn’s method
gives the following transformation parameters.

(=10 00 (00 _
R—(o.o 1.0)' t‘(o.o)’ e=10

The least mean squared error 2 = 0.0, and the point pattern ¥ and
the transformed point pattern of X is shown in Fig. 2. The obtained
transformation gives a perfect matching (¢* = 0.0). However, it
obviously represents a reflection. Thus, if a reflection is not allowed
as a transformation between X and Y, their method fails to give an
appropriate solution in this case.

On the other hand, the transformation parameters given by the
proposed method is as follows.

_{ 0.832 0.555 _ {—0.800 _
R= (—0.555 0.832)" = ( 0.400 ) c=0.721 (64)

(63)

~2

The least mean squared error ¢ = 0.533, and the transformation
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Fig. 3. The matching result with the proper condition of R.

result is shown in Fig. 3. This is the optimum transformation under
the condition that R should be a real rotation matrix.

IV. CoNCLUSION

We presented here a closed-form solution of the least-squares
problem of the similarity transformation parameter estimation, using
the singular value decomposition of a covariance matrix of the
data. The solution is applicable to any dimensional problem, though
the quaternion method is valid only for point patterns in three-
dimensional space. The presented solution is considered to be a
refinement of Arun and Horn’s method, however it always gives
the correct rotation matrix even when their method fails. Arun and
Horn’s result can be obtained if we set S = I in (40) without regard
to the sign of det(X.,). When more than two distinct points in
two-dimensional space and more than three noncolinear points in
three-dimensional space are given, the solution can determine the
transformation parameters uniquely, since rank(X.,) = m — 1 in
these cases.

In concluding the correspondence, we would like to mention that
after we had submitted our original manuscript, it was brought to
our attention by one of the reviewers that results similar to some
of ours were mentioned independently by Holder et al. [7]. They
point out that a rotation matrix of the solution of an absolute
orientation problem must satisfy an equation similar to (11). The
details, however, are not given in their paper.
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The Topology of Locales and Its
Effects on Position Uncertainty

David 1. Havelock

Abstract—The precision to which the position of a target in a digital
image can be estimated, may be analyzed by considering the possible
digital representations of the target. Such an analysis leads to regions
of indistinguishable target position, referred to as locales. By considering
the density, distribution, and shape of these locales the available precision
can be estimated. Previously, such analyses have presumed an absence of
noise in the digital image. It is shown here how the noise tolerance for
position estimation is affected by the topological properties of locales,
such as locale connectivity, adjacency, and clustering.

Index Terms—Image metrology, locales, noise, precision, registration,
targets.

[. INTRODUCTION

Subpixel position estimation for targets in digital images has
been investigated for some time, particularly in regard to image
registration. Recent articles have investigated geometric precision by
means of enumerating the distinct digital representations of a target in
digital images. By this approach, an expression has been derived for
the number of distinct digital representations of a binary straight edge,
when the edge has a known orientation [1]. Asymptotic expressions
have been derived when neither orientation nor offset are known [2],
[3]- Binary targets for optimal registration have been designed, based
on maximizing the number of distinct digital representations [4], [5].
For more general target shapes, and abstract position parameters,
graphical evaluation of registration precision and analytical bounds
on precision have been developed based on parameter equivalence
classes (locales) defined by the digital representations of the target
[6].

Related work exists for the digital representations of line segments
[7]-[11], arc [12] and circles [13], as well as analysis of precision
for digitizing schemes [14]—[16], and position estimation algorithms
[17]-[22], to list a few. The optimal position estimate, in regard
to errors due to quantization and sampling, has been defined in a
natural way as the center of the region (locale) corresponding to
each digital representation of the target [23], [24]. In the analyses
presented here, target positional uncertainty is considered, rather than
the more commonly investigated image intensity errors. (The latter
being exemplified, for example, by the excellent analysis in [14]
which considers image intensity errors, rather than positional errors,
due to combined quantization and sampling.)

One shortcoming of the method of analyzing geometric precision
by enumerating the digital representations of a target has been the
difficulty in dealing with noise in an analytically consistent manner.
Typically, a noise-free analysis is developed, followed by a series of
simulations to investigate the effects of noise in an empirical manner.
This is a convenient approach to infer the validity of the noise-free
analysis in a realistic noisy image. It would be better, however, to
incorporate the noise within the formal analytical framework in the
first place.

Here, the relationship between image noise and positional uncer-
tainty is investigated in the context of discrete digital representations
of a target. Image noise, which causes the observed pixel values
to differ from those of the ideal model, can be expressed as an
error volume in image space. Registration error due to positional
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